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Abstract. A major challenge facing conservation biologists and wildlife managers is 
to predict how fauna will respond to habitat loss. Different species require different amounts 
of habitat for population persistence, and species' reproductive rates have been identified 
as one of the major factors affecting these habitat-amount requirements. The purpose of 
this study was to test the prediction that species with higher reproductive rates require less 
habitat for population persistence than species with lower reproductive rates. We used 41 
species of forest breeding birds to test for a relationship between the annual reproductive 
output and the amount of forest cover at which each species has a 50% probability of 
presence in the landscape. To look at the presence of species over landscapes with varying 
amounts of forest cover, we combined two large-scale independent data sets: the North 
American Breeding Bird Survey and the U.S. Geological Survey (USGS) Land Use and 
Land Cover (LULC) digital data. Species presence/absence information was determined 
over a 10-year window for 779 circular landscapes that surround each Breeding Bird Survey 
route in the central and eastern USA region. Annual reproductive rates were obtained from 
the literature. 

There was a significant negative (interspecies) relationship between the estimated min- 
imum habitat amount at which there was a 50% probability of presence in the landscape 
and annual reproductive output (F,39 == 7.71, P = 0.008, r2 = 0.16). This is the first direct 
test for a negative relationship between minimum habitat requirements and annual repro- 
ductive rates. 

Key words: Breeding Bird Survey; deforestation; extinction threshold; forest-breeding birds; 
habitat amount; habitat loss; minimum area requirements; minimum habitat requirements; population 
persistence; reproductive rate. 

INTRODUCTION 

Loss of habitat due to anthropogenic activities is the 
single biggest threat to the survival of many species 
and to global biodiversity, in general (Groombridge 
1992, Ehrlich 1995, Lande 1998, Sih et al. 2000). The 
negative effects of habitat loss occur across ecosys- 
tems, affecting many different types of organisms: am- 
phibians in wetlands of north-central USA (Lehtinen 
et al. 1999), beetles in Amazonian forests (Didham et 
al. 1998), butterflies in Swedish meadows (Bergman 
and Landin 2001), and small mammals in Californian 
scrub habitats (Soule et al. 1992). There is special con- 
cern about the effects of habitat loss on forest birds 
that breed in the eastern United States and Canada and 
winter in the Neotropics (Robbins 1979, Whitcomb et 
al. 1981, Lynch and Whigham 1984, Freemark and 
Merriam 1986, Askins et al. 1987, Blake and Karr 

Manuscript received 20 March 2002; revised 2 December 
2002; accepted 17 January 2003; final version received 20 Feb- 
ruary 2003. Corresponding Editor: J. R. Walters. 

3 Present address: Canadian Wildlife Service, Species at 
Risk Branch, Place Vincent Massey, 4th Floor, 351 St. Joseph 
Blvd., Gatineau, Quebec, Canada K1A OH3. 
E-mail: melissa.vance@ec.gc.ca 

1987, Robbins et al. 1989a, Terborgh 1989, Askins et 
al. 1990, Robinson and Wilcove 1994, Martin and 
Finch 1995, Flather and Sauer 1996). Many of these 

Neotropical migrant birds are currently experiencing 
regional population declines throughout eastern North 
America (Robbins et al. 1989c, Robinson and Wilcove 
1994). 

The unprecedented rates of habitat destruction and 

subsequent threats to species survival are of major con- 
cern to conservation biologists who are struggling to 
understand the effects of habitat loss and to predict the 
effects of future landscape changes. Thus, in order to 
make conservation efforts more proactive, we must be 
able to predict the minimum amount of habitat that is 

necessary for population survival (Nee 1994, Doncas- 
ter et al. 1996, Fahrig 2001). This requires an under- 

standing of those life-history traits that make some 

species more sensitive to habitat loss than others (Pimm 
et al. 1988, McKinney 1997, Purvis et al. 2000). 

Patch scale 

Minimum habitat requirements have often been mea- 
sured at the patch scale (Robbins 1979, Hayden et al. 
1985, Robbins et al. 1989a, Wenny et al. 1993, Bright 
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et al. 1994). Galli et al. (1976) and Forman et al. (1976) 
considered the minimum habitat amount to be the min- 
imum size habitat patch in which a particular species 
was found, whereas Hinsley et al. (1995) considered it 
to be the minimum patch size in which a species breeds. 
However it has been recognized that one simple oc- 
currence or breeding event in a patch does not indicate 
that the patch contains sufficient habitat for long-term 
population persistence. Calculations of minimum area 
requirements must be based on the amount of habitat 
necessary for population persistence (Hayden et al. 
1985, Wenny et al. 1993). Diamond (1975, 1978) rec- 
ognized this when he developed incidence functions in 
which the proportion of occurrence of a species is plot- 
ted against area, for a range of patch sizes, in order to 
obtain a measure of a species' minimum area require- 
ments. Diamond (1978) considered the patch size for 
which a species has a 50% incidence to be a good 
measurement of the amount of habitat required for pop- 
ulation viability. Hayden et al. (1985), on the other 
hand, estimated the habitat area requirement for pop- 
ulation persistence to be the patch size for which a 
species has an occurrence rate of 100%. The problem 
with using an occurrence rate of 100% is that it has 
been shown theoretically (Skellam 1951, Bevers and 
Flather 1999) and empirically (Robbins et al. 1989a) 
that many species never reach this maximum occur- 
rence, even in very large patches. Robbins et al. 
(1989a) thought that a conservative estimate of the 
minimum area required by a species to ensure popu- 
lation viability was the patch size at which the species 
was present at 50% of its maximum occurrence rate. 

Landscape scale 

Recently it has become recognized that species re- 
spond not only to within-patch characteristics, but also 
to habitat at a landscape scale (Askins et al. 1987, 
Turner 1989, Freemark and Collins 1992, Andren 1994, 
Hinsley et al. 1995, Opdam et al. 1995, Weins 1995). 
Thus, instead of looking solely at the patch size as a 
measure of habitat amount, researchers are looking at 
the amount of habitat in landscapes of constant size 
and comparing species abundance or incidence across 
these landscapes (Flather and Sauer 1996, Findlay and 
Houlahan 1997, Drolet and Desrochers 1999, Jansson 
and Angelstam 1999, Trzcinski et al. 1999, Villard et 
al. 1999, Pope et al. 2000). Some studies measure both 
patch size and what they term "isolation effects," 
which is essentially a landscape-scale measure of the 
amount of habitat within a specified area around a patch 
(Askins et al. 1987, Robbins et al. 1989a, Hinsley et 
al. 1995) and the resistance of the interpatch matrix to 
species movement (Ricketts 2001). These analyses 
demonstrate the importance of looking beyond the 
patch scale. 

Factors affecting minimum area requirements 
The proportion of suitable habitat in a landscape nec- 

essary to maintain viable populations is not constant 

across species (Kareiva and Wennergren 1995, Bas- 

compte and Sole 1996, Doncaster et al. 1996, Gibbs 
1998, With and King 1999, Fahrig 2001; C. H. Flather, 
M. Bevers, E. Cam, J. Nichols, and J. Sauer, unpub- 
lished manuscript). Modeling studies suggest that it 

depends on landscape factors such as the quality of the 
matrix or nonhabitat portion of the landscape (Fahrig 
2001, Ricketts 2001) and the pattern (fragmentation) 
of habitat destruction (Dytham 1995, With and King 
1999, Fahrig 2001), as well as species characteristics 
such as reproductive rate (Lande 1987, With and King 
1999, Fahrig 2001), dispersal ability (Lande 1987, Dy- 
tham 1995, Hanski et al. 1996, With and King 1999), 
and rate of emigration (Fahrig 2001). Minimum habitat 

requirements are predicted to increase with decreasing 
matrix quality, increasing habitat fragmentation, de- 

creasing reproductive rate, decreasing dispersal ability, 
and increasing rate of emigration. Using a simulation 
model, Fahrig (2001) studied the relative effects of four 
factors that are thought to influence the amount of hab- 
itat required for population persistence at a landscape 
scale. She found that reproductive rate had the largest 
effect on the amount of habitat required for population 
persistence, followed by the rate of emigration, matrix 

quality, and habitat pattern, respectively (Fahrig 2001). 
The results of With and King's (1999) model also 
showed that reproductive capacity had the largest effect 
on the amount of habitat required for population per- 
sistence. 

Purpose 

The objective of this study was to test the prediction 
that organisms with higher reproductive rates require 
less habitat for population persistence than do those 
with lower reproductive rates. We used 41 species of 

forest-breeding birds to test for a relationship between 
the annual reproductive output of the bird species and 
the amount of forest in the landscape at which the spe- 
cies have a 50% probability of presence over a 10-year 
window. 

METHODS 

We used data from the North American Breeding 
Bird Survey, BBS (USGS Patuxent Wildlife Research 
Center 2001), to estimate the "proportion presence" 
of each of 41 forest bird species over a 10-year window, 
commencing with the year of the aerial photo for each 

landscape, in circular landscapes that surround each 
BBS route. Proportion presence was calculated as the 
number of years a species was present, divided by the 
number of years the route was run over a 10-yr window. 
To calculate the percent forest cover (coniferous, de- 
ciduous, and mixed forest) of the 779 landscapes lo- 
cated in the central and eastern USA (Fig. 1), we used 
the U.S. Geological Survey (USGS) Land Use and 
Land Cover (LULC) digital data (U.S. Department of 
the Interior 1987). Each point in Fig. 1 represents the 
centroid of a circular landscape with a radius of 19.7 
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0 1000 kilometers V 
I I S 

FIG. 1. Study area in central and eastern United States, showing the location of the 779 landscapes. Each landscape has 
a radius of 19.7 km and is centered on a Breeding Bird Survey route, so that the landscape contains the entire route. The 
location of the BBS route within each landscape is shown as a gray zigzag line. Black areas represent forest, and white areas 
include all other land cover types. 

km (area - 1200 km2), which is equal to half the length 
of a BBS route. Each landscape was centered on the 
midpoint of a BBS route to ensure that the landscapes 
contained the entire route. 

We selected the landscapes that were within each 
species' geographical range using digital range maps 
(WILDSPACE 2001), and conducted the analysis on 
this subset. For each species, we plotted the proportion 
presence against the percent forest cover, and used non- 
parametric regression curves to smooth the data. These 
smoothed curves were then used to estimate the min- 
imum habitat amount at which the species has a 50% 
probability of presence in the landscapes. 

To estimate the annual reproductive output for each 
species, we multiplied the average clutch size by the 
number of broods produced per reproductive season, 
using values obtained from the literature. Finally, we 
used regression analysis to test for the predicted neg- 
ative relationship between the minimum habitat re- 
quired for a 50% probability of presence and annual 
reproductive output. 

Bird presence 
The North American Breeding Bird Survey is a 

large-scale annual survey of >4000 roadside routes 
that are randomly distributed within a one-degree block 
of latitude and longitude, throughout the United States 
and southern Canada. Initiated in 1966, the BBS is used 
to monitor the distribution and status of North Amer- 
ican breeding birds. Each route is 39.4 km long, with 

a total of 50 3-min point counts conducted at 0.8-km 
intervals. At each stop, the observer records all birds 
heard at any distance, and seen within a 0.4 km radius. 

Taking the species presence over a 10-yr period was 
a compromise between allowing enough time for a spe- 
cies to respond to the landscape structure and mini- 

mizing the amount of landscape change over that time 

period. We considered a species to be present during 
a year if it was recorded on at least one of the 50 stops 
that year, and we excluded routes from the analysis if 

they were not surveyed at least eight times in the 10- 

year window. 
The BBS has strict guidelines for the conditions un- 

der which the routes are run. In most areas, the routes 
are surveyed in early-to-mid June under good weather 
conditions (high visibility with little or no rain and 

wind), and commence 30 min before sunrise. We ex- 
cluded from the analysis those routes that did not meet 
these BBS guidelines. 

This study focused on birds that require forest for 

breeding. We selected both interior and interior/edge 
forest species, as classified by Freemark and Collins 

(1992), and used the Birds of North America series 

(Poole and Gill 1992-ongoing) to select additional spe- 
cies not classified by Freemark and Collins (1992). 
Villard (1998) pointed out the lack of evidence for 

classifying species as either interior or interior/edge, 
but because we combined these two categories, this 
was not a problem. 
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An additional criterion that we used to select species 
for analysis was a positive response of proportional 
occurrence to increasing forest amount. A positive 
Pearson product-moment correlation (P < 0.05) be- 
tween forest amount and proportional occurrence, es- 
timated over the set of landscapes that fell within the 
species' range, was used to identify the set of birds 
qualifying for analysis. This effectively excluded any 
species that may have been classified incorrectly by 
Freemark and Collins (1992). The species excluded 
from our analysis included: Common Yellowthroat 
(Geothlypis trichas), Gray Catbird (Dumetella caroli- 
nensis), Northern Cardinal (Cardinalis cardinalis), 
Yellow-billed Cuckoo (Coccyzus americanus), and 
Yellow-shafted Flicker (Colaptes auratus). 

We included species in the analysis if a substantial 
portion of their breeding range fell within the central 
and eastern USA region. Six forest birds, Carolina 
Chickadee (Parus carolinensis), Yellow-throated War- 
bler (Dendroica dominica), Blackburnian Warbler 
(Dendroica fusca), Black-throated Green Warbler 
(Dendroica virens), Black-and-white Warbler (Mni- 
otilta varia), and Worm-eating Warbler (Helmitheros 
vermivorus), were excluded early in the analysis be- 
cause digital range maps were not available for these 
species. Raptors, fowl-like birds, and nocturnal species 
were also excluded, because the surveys are conducted 
during daylight hours and primarily use sound to iden- 
tify species. For this reason, these birds are not sur- 
veyed very effectively with the Breeding Bird Survey 
methods (Robbins et al. 1989b, Kirk and Hyslop 1998). 
In the end, we selected a total of 41 forest species (see 
the Appendix). 

Reproductive output 

Ehrlich et al. (1988) was the primary source for ob- 
taining annual reproductive rates for each of the 41 
species; it is the most complete and recent publication 
that combines data from many different sources, and 
thus is meant to encompass the species' entire geo- 
graphical range. When reproductive data for a certain 
species were missing or uncertain, we supplemented 
this information first with the Birds of North America 
series (Poole and Gill 1992-ongoing), followed by Har- 
rison (1978) and Peck and James (1987), respectively. 

Clutch size can vary both geographically and be- 
tween individuals. Because we were interested in in- 
terspecific comparisons of habitat occupancy patterns, 
we used the most common clutch size reported in the 
literature as representative of that species across its 
geographic range (or a good portion of its range). When 
the most common clutch size was given as a range in 
the number of eggs produced, we chose the midpoint 
of that range. This occasionally resulted in non-integer 
clutch size estimates (e.g., 3.5 eggs). 

The number of broods produced in a season is not 
as well known as the clutch size, because it requires 
researchers to follow individual birds throughout the 

reproductive season. Within the geographical range of 
a species, there can also be considerable variation in 
the number of broods produced, because the reproduc- 
tive season is longer in the southern portion of a spe- 
cies' range than it is in the north. For this reason, it 

may be common for a species to be double-brooded in 
the southern part of its range and single-brooded in the 
north. Because we wanted to obtain a value that en- 

compassed the entire range of a species, we averaged 
the number of broods produced to obtain a reasonable 
value for each species over its entire geographical 
range. If a species is single-brooded in the north and 
double-brooded in the south, we took the number of 
broods produced per season to be 1.5. 

Ehrlich et al. (1988) occasionally states the number 
of broods produced per reproductive season followed 

by a question mark. In these situations, we supple- 
mented this information with a second reference as 
stated previously. Further details on the decisions made 
in determining the number of broods produced per sea- 
son for each species, as well as the references used for 
this information, can be found in Vance (2002). 

Landscape data 

The USGS LULC digital data (U.S. Department of 
the Interior 1987) were interpreted from high-altitude 
aerial photographs taken between 1969 and 1985, and 

they characterize land cover types (such as forest cover) 
to a resolution of 4 ha (200 x 200-m grid; U.S. De- 

partment of the Interior 1987). See Anderson et al. 
(1976) for further details about the classification system 
used for the USGS land cover data. 

We quantified the percent forest cover (coniferous, 
deciduous and mixed forest) in each landscape using 
Fragstats 2.0 (McGarigal and Marks 1994). 

Data analysis 

We used digital range maps to subset the BBS routes 
to be used in the analysis for each bird species. This 
was done by overlaying the species' range map (WILD- 
SPACE 2001) on the center location of the BBS routes 

using ArcView 3.2 and selecting the routes that fell 
within a species' geographical range. If the range of a 

species extended over the entire study area, all 779 

landscapes were used in the analysis. 
After selecting the routes within a species' geograph- 

ical range, we plotted the proportion of years that the 

species was present in the 10-year window against the 
amount of forest in the landscape surrounding each 
route. We repeated this for each of the 41 forest bird 

species. 
Because BBS data are very noisy, we used a non- 

linear nonparametric regression to smooth the data. 
Nonlinear regression was used instead of linear re- 

gression because with nonlinear methods it is not nec- 

essary to choose a model a priori, and this allows the 
data themselves to estimate the best regression surface 
(Cleveland 1979, Cleveland and Devlin 1988). We used 
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a locally weighted regression, or LOESS, to smooth 
the dependent variable in a moving window fashion by 
fitting a local regression that was weighted by the dis- 
tance of the data points within a specified neighborhood 
from a point x on the independent axis. Points close to 
x are given a large weight and points farther from x 
are given a smaller weight (Cleveland 1979, Cleveland 
and Devlin 1988). To fit the LOESS curves, we used 
the default parameters in SAS, which fits a local linear 
regression, uses a normal weight function, and selects 
the window width that minimizes the generalized cross- 
validation mean squared error (SAS Institute 1990). 
This method was chosen because it offers a good com- 
promise between goodness of fit to the data and the 
smoothness of the LOESS curve. 

We used the smoothed regression curves to estimate 
the minimum habitat required for each species to have 
a 50% probability of presence in the landscape. We 
chose 50% presence because this was considered a ten- 
dency toward occupancy. Fig. 2 demonstrates how the 
minimum habitat requirements were estimated from the 
LOESS-smoothed data for the four types of curves we 
encountered. A "normal" LOESS curve is represented 
by Fig. 2a, where the minimum habitat amount at which 
there was a 50% probability of presence in the land- 
scape could be estimated directly from the graph. Fig. 
2b represents a species that always had. a presence 
>50%, regardless of the amount of habitat in the land- 
scape. In this situation, the minimum habitat amount 
at which there is a 50% probability of presence was 
taken to be 1%. Fig. 2c represents the opposite situa- 
tion, in which the species never reaches a 50% pres- 
ence. In this case, the minimum habitat amount was 
taken to be 99%. Fig. 2d represents the situation in 
which there is more than one habitat amount where the 
species has a 50% presence. In this situation, the min- 
imum habitat amount was taken to be the lowest 
amount of habitat in which the species has a 50% prob- 
ability of presence in the landscape. 

Finally, we used linear regression analysis in SAS 
(SAS Institute 1990) to test for an interspecies rela- 
tionship between the minimum habitat required for a 
50% probability of presence in the landscape and an- 
nual reproductive output. 

RESULTS 

Annual reproductive output 

The clutch size and number of broods produced per 
year, as well as the estimated annual reproductive out- 
put for the 41 forest bird species, are shown in the 
Appendix. The average clutch size ranged between 2.5 
and 7 eggs (4.30 + 0.14 eggs/clutch; all values are 
expressed as mean ? 1 SE), whereas the average num- 
ber of broods produced per year ranged from 1 to 2.5 
(1.34 ? 0.06 broods/yr). When these above two values 
were multiplied, the result was an average annual re- 
productive output that ranged between 2.5 and 9 eggs 

(5.71 + 0.28 eggs/yr). The Black-billed Cuckoo pro- 
duces the fewest eggs, with an annual average of 2.5 

eggs, whereas the Eastern Phoebe, Tufted Titmouse, 
and Yellow-rumped Warbler produce the most eggs, 
averaging nine per year. 

Landscape data 

There was considerable variation in the amount of 
forest among the 779 landscapes, with forest cover 

ranging between 0.00% and 96.88% (see Fig. 3). 

Data analysis 

The number of landscapes used in the analysis for 
each species ranged between 143 and 779, depending 
on the geographic range of the species (see Appendix). 

The relationship between the proportion presence 
over the 10-yr window and the percent forest cover in 
the landscape is shown in Fig. 2 for four of the 41 
forest bird species. The LOESS-smoothed curves are 
shown superimposed on the original scatterplot, and 
the vertical line shows the minimum habitat amount at 
which there is a 50% probability of presence in the 

landscape. The estimated minimum habitat amount re- 

quired for a 50% probability of presence in the land- 

scape is shown in the Appendix for each of the 41 

species. See Vance (2002) for the remaining scatter- 

plots and LOESS curves for the species not shown. 
A simple linear regression indicated that there was 

a significant negative (interspecies) relationship be- 
tween the estimated minimum habitat amount at which 
there was a 50% probability of presence in the land- 

scape and annual reproductive output (F,,39 = 7.71, P 
= 0.008, r2 = 0.16; Fig. 4). This relationship was not 
driven by extreme data points or by the designation of 
1% minimum habitat requirements for those species 
that are always present in 50% of the years, regardless 
of the amount of habitat in the landscape, and the des- 

ignation of 99% minimum habitat requirements for 
those species that are never present in 50% of the years. 
In fact, the relationship was stronger when we removed 
these species from the analysis (F, 26 = 8.79, P = 0.006, 
r2 = 0.25). 

DISCUSSION 

This is the first empirical study that directly shows 
an interspecies relationship between minimum habitat 

requirements and annual reproductive output. The re- 
sult is in agreement with predictions from the modeling 
studies of Fahrig (2001) and With and King (1999): 
species that have a lower reproductive output require 
more habitat for population persistence than those spe- 
cies that have a higher reproductive output. 

Within the fields of ecology and conservation biol- 

ogy it is has long been assumed that species with low 

reproductive rates require more habitat, and thus are 
more prone to extinction, than species with high re- 

productive rates. However, there have been no direct 

empirical tests and few indirect ones. Smith and Quin 

October 2003 2647 



MELISSA D. VANCE ET AL. 

a) Veery n =313 

9 109 9 99 .* * 99 9 9* ~ 9 

* 9 9 9 99 9 

9 9 9 

0 
~~26.5% * 

999999 %9e 9 99 

c) Louisiana Waterthrush 

99 9@9 99 

* 9*0 9 9 

Sw 99 S 0000 9 *0 eg 

9 9~~~~~ 90 9 9 9 

00 *9 '99 
9 999 

9 
I 

**9 

# 

9 a#0 b 

4"o 

.0..* 9. 9 

Ecology, Vol. 84, No. 10 

b) Eastern Wood-Pewee n = 774 

n = 625 n = 616 d) Acadian Flycatcher 

.9 ~ ~ ~ ~ 09 x " 

& * 9 *9 9....'4 g 9 

40 60 80 100 0 20 40 60 80 100 
Percent forest cover Percent forest cover 

FIG. 2. Examples of each of the four types of LOESS curves observed with the 41 forest birds used in the analysis. 
Minimum habitat (forest) requirements at which there was a 50% probability of presence of the bird species in the landscape 
over a 10-yr window were estimated from these LOESS curves. The locations of the minimum habitat requirements along 
the axis of habitat amount (forest cover) are shown by the vertical bars. (a) The "normal" LOESS curve for which the 
minimum habitat requirement for a 50% probability of presence in the landscape could be estimated directly from the graph 
(22 species, with Veery as an example). (b) S~pecies for which the probability of presence over the I10-yr window was always 
higher than 50% on the LOESS curve, as typified by Eastern Wood-Pewee. The minimum habitat amount for these species 
was detcrmiincd to bc 1% (5 species). (c) Species for which the probability of presence never reached 50% on the LOESS 
curve (e.g., Louisiana Waterthrush). The minimum habitat requirement for these species was estimated at 99% (8 species). 
(d) Species for which the 50% probability of presence in the landscape occurred at more than one habitat amount. We took 
the minimum habitat requirement to be the lowest amount of habitat at which the species was present in 50% of the years 
(6 species). 
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FIG. 4. Relationship between the minimum 
habitat required (percent forest cover) for a 50% 
probability of presence in the landscape, and 
the annual reproductive output of forest breed- 
ing birds (n = 41 species). The open circles 
represent both the common species and the rare 
species for which minimum habitat require- 
ments were estimated to be 1% and 99%, re- 
spectively (see Fig. 2). 
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(1996) found that geographical range reductions of 
conilurine rodent species, which are undergoing high 
rates of extinction and decline in Australia, were less 
severe for those species that have higher annual repro- 
ductive rates. Diamond (1975) found that those species 
capable of surviving on smaller and'more remote is- 
lands had longer breeding seasons and were capable of 
raising more broods per year than those species not 
found on these islands. In addition to these two studies, 
several anecdotal comparisons have been made be- 
tween species with vast differences in reproductive 
abilities, such as comparing habitat requirements for 
large and small mammals (Peters 1983, Calder 1984). 
This study is unique because the cross-species com- 
parison was limited to forest birds with comparatively 
similar body sizes (Dunning 1993) and the variation in 
annual reproductive rate was relatively small. Suther- 
land et al. (2000) found that body size scales with natal 
and breeding dispersal distance, such that dispersal dis- 
tance increases with increasing body size. Because the 
birds in this study have fairly similar body sizes, they 
should be scaling to the landscape in a similar way. 

We investigated the possibility that potential con- 
founding covariates may have produced a spurious re- 
lationship between minimum habitat requirements and 
annual reproductive rates. These ancillary analyses 
suggest that this was not the case. There was no sig- 
nificant relationship between body size and annual re- 
productive rate (F,,39 = 0.30, P = 0.59, r2 = 0.008), 
or between body size and the minimum habitat required 
for a 50% probability of presence in the landscape (Fl 39 
= 0.06, P = 0.81, r2 = 0.001). Similarly, there was no 

significant difference in annual reproductive output be- 
tween species restricted to forests (16 species) and spe- 
cies that are more generalist in their habitat use (25 
species; t = 1.12, df = 39, P = 0.27). Therefore, al- 

though the amount of habitat required for a 50% prob- 
ability of presence in the landscape may have been 
underestimated for generalist species, this could not 
have produced the observed relationship between an- 
nual reproductive output and minimum habitat require- 
ments (although it probably added noise to the rela- 
tionship). 
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The observed relationship also is not due to an un- 

derlying latitudinal trend in habitat amount. There was 
no significant relationship between percent forest cover 
and latitude (F, 777 = 0.26, P = 0.61, r2 = 0.0003). 
Although we did observe a small positive relationship 
between altitude and forest cover, this did not produce 
a spurious relationship between reproductive output 
and minimum habitat requirements. This would occur 
if high-elevation study species had lower reproductive 
output than low-elevation species. In fact, the seven 
study species that prefer higher elevations (Black- 
throated Blue Warbler, Yellow-rumped Warbler, Olive- 
sided Flycatcher, Rose-breasted Grosbeak, Brown 

Creeper, Blue-headed Vireo, and Canada Warbler; 
Poole and Gill 1992-ongoing) had a mean annual re- 

productive rate of 5.64 + 0.71 eggs/yr (see Appendix), 
whereas the six species that prefer lower elevations 
(Red-bellied Woodpecker, Yellow-throated Vireo, Pine 
Warbler, Kentucky Warbler, Prothonotary Warbler, and 
Hooded Warbler; Poole and Gill 1992-ongoing) had a 
mean annual reproductive rate of 5.23 + 0.79 eggs/yr 
(see Appendix). The remaining 28 study species occur 
in both high- and low-altitude areas. 

Finally, differences in species' detectability could 

potentially introduce bias into the results if species with 
low reproductive rates also had lower detection rates 
relative to species with high reproductive rates. We 
minimized this potential problem at the onset of this 

study by excluding species that are known to be sam- 

pled poorly by the BBS (e.g., nocturnal species, rap- 
tors). Furthermore, four of our study species were de- 
termined to have lower detection rates due to their se- 
cretive nature, quiet song, or less persistent singing 
(Brown Creeper, Black-billed Cuckoo, White-breasted 
Nuthatch, and Blue-gray Gnatcatcher; Poole and Gill 

1992-ongoing). Those species had a mean annual re- 

productive rate of 5.31 + 0.98 eggs/yr, which is not 

significantly lower than the mean annual reproductive 
rate of the remaining 37 study species (5.76 ? 0.29 

eggs/yr)(see Appendix). Although this provides evi- 
dence, from a small subset of species, that behaviors 

leading to low detectability did not confound our in- 
ference, more subtle differences in detectability among 
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the remaining 37 species could still cause a spurious 
relationship if low-reproducing species had, on aver- 
age, lower detection rates than high-reproducing spe- 
cies. A rigorous examination of this issue would require 
species-specific estimates of detectability on a route- 
by-route basis using a method similar to that reviewed 
in MacKenzie et al. (2002), which requires multiple 
visits to a BBS route over a relatively narrow temporal 
window. 

Intuitively, it has long been understood that smaller 
populations have a higher risk of extinction due to de- 
mographic stochasticity (Goodman 1987, Pimm et al. 
1988, Raup 1991, Boyce 1992). It is also intuitive that 
landscapes with less habitat support smaller popula- 
tions than landscapes with more habitat. Species with 
a higher reproductive potential are better able to sur- 
vive in landscapes with less habitat because they can 
recover more quickly from low population numbers 
caused by environmental disturbance, disease, or pre- 
dation. Species with a lower reproductive potential re- 
main at low population levels longer, thus increasing 
their risk of extinction (Pimm et al. 1988). An addi- 
tional advantage for species with a higher reproductive 
output is that they produce more dispersers that are 
then able to colonize other areas in the landscape. 

Modeling studies predict the existence of species- 
specific habitat extinction thresholds for population 
persistence, whereby a small reduction of habitat at the 
threshold results in a sharp drop in the probability of 
persistence (Lande 1987, Bascompte and Sole 1996, 
Pagel and Payne 1996, Bevers and Flather 1999, Hill 
and Caswell 1999, With and King 1999, Fahrig 2001). 
Although landscapes in modeling studies that show this 
sharp extinction threshold are closed to immigration, 
landscapes in reality are open. Pagel and Payne (1996) 
and Flather et al. (C. H. Flather, M. Bevers, E. Cam, 
J. Nichols, and J. Sauer, unpublished manuscript) il- 
lustrate the effect of immigration on species extinction 
thresholds. Their studies show that immigration into 
the landscape results in an underestimation of the 
amount of habitat required for population persistence 
(Pagel and Payne 1996; C. H. Flather et al. unpublished 
manuscript). Further, immigration serves to dampen the 
thresholds, which may make them difficult to detect 
empirically (C. H. Flather et al., unpublished manu- 
script). In this study, we were unable to consistently 
locate the extinction thresholds for our species. Thus, 
to avoid the subjectivity of locating these thresholds, 
we calculated the amount of habitat required for a 50% 
probability of presence in the landscape. We stress that 
the minimum habitat requirements measured in this 
study are not absolute minimum habitat requirements, 
but rather relative requirements that allowed a cross- 
species comparison. 

The relationship between minimum habitat require- 
ments and annual reproductive output found here (Fig. 
4) is particularly significant because the estimates of 
habitat and reproductive output contained many sourc- 

es of error. First, the estimated annual reproductive rate 
was averaged to encompass a species' entire range, yet 
for some species there is considerable geographic var- 
iation within the study area in the number of eggs pro- 
duced per year (Ricklefs 1973). This is especially true 
for species that are single-brooded in the northern part 
of their range and double-brooded in the southern part 
of their range (Ehrlich et al. 1988). Second, "habitat" 
was measured as any forest (coniferous, deciduous, and 
mixed forest), which was a very coarse measure of the 
true amount of breeding habitat for each species. Spe- 
cies have different microhabitat requirements, and thus 
the true amount of breeding habitat within each land- 

scape may have been overestimated for some species. 
For example, the Prothonotary Warbler, Louisiana Wa- 
terthrush, and Northern Waterthrush build their nests 
near standing or running water and thus, not all forested 
areas may be used for breeding. In addition, wood- 

peckers and other cavity-nesting species require stand- 

ing dead trees for breeding, so early-seral forest (which 
typically has few, if any, standing dead trees) may not 

qualify as breeding habitat for them (Poole and Gill 

1992-ongoing). Similarly, habitat may be underesti- 
mated for more generalist species, such as the Black- 

capped Chickadee, that are able to use more open or 
residential areas for breeding in addition to forested 
areas (Poole and Gill 1992-ongoing). Differences in 

species detectability may also have been a source of 
extraneous variation in this study (Boulinier et al. 
1998). We minimized this potential problem by ex- 

cluding species that are poorly sampled by the BBS. 
One way to lessen the detectability issue would be to 

repeat the analysis at the species level by looking at 

geographic variation in annual reproductive rates and 
minimum habitat requirements, and testing to see if the 

negative relationship still holds. 
The methodology of the Breeding Bird Survey itself 

is another potential source of unexplained variation. 
Because the BBS is a roadside survey, there is a po- 
tential for bias in the types of habitats found next to 
roads (Bart et al. 1995, Keller and Scallan 1999). In 
their study in Maryland and Ohio, Keller and Scallan 
(1999) found that forest was underrepresented in the 
habitat along roads. This may have resulted in an un- 
derestimation of the true proportion presence in the 

landscape over the 10-yr window. However, as all the 

species in this study are forest birds, this bias should 
have been consistent across species. Another criticism 
with the reliability of BBS data is the difference in 
observer quality (Sauer et al. 1994, Kendall et al. 
1996). BBS observers differ in their ability to count 
birds, and thus there may be differences between ob- 
servers in the estimation of species abundance (Sauer 
et al. 1994, Kendall et al. 1996). These differences in 
observer quality should be minimized in this study be- 
cause we used presence/absence data, not abundance, 
for each route. Despite the inherent biases with data, 
the BBS remains a very valuable source of information 
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for the status of North American birds at a continental 
scale. 

A major challenge facing conservation biologists and 
wildlife managers is to predict how fauna will respond 
to habitat loss. Different species require different 
amounts of habitat for population persistence, and it is 

imperative that we identify the factors that affect these 
habitat requirements. This study shows a clear negative 
relationship between a forest bird species' reproductive 
rate and the amount of habitat required for a certain 

probability of presence in the landscape. This result 

brings empirical evidence to the long-held belief that 

species with low reproductive potential are more prone 
to extinction due to habitat loss than species with high 
reproductive potential. Until landscape-scale minimum 
habitat requirements needed to maintain viable popu- 
lations can be measured empirically, it will be neces- 

sary to maintain large tracts of forest throughout the 

breeding range to ensure population survival of all spe- 
cies. 
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