When is a landscape perspective important?

What is landscape ecology?

Although the definition of landscape ecology has been dealt with extensively (some would say ad nauseam) in the landscape ecological literature, there remains confusion among other ecologists as to exactly what landscape ecology is and, particularly, what its unique contribution is to ecology as a whole.

Ecology is the study of the interrelationships between organisms and their environment (Ricklefs, 1979). The goal of ecological research is to understand how the environment, including biotic and abiotic patterns and processes, affects the abundance and distribution of organisms (Fig. 1.1). This includes indirect effects such as the effect of an abiotic process (e.g., fire) on a biotic process (e.g., germination), which in turn affects the abundance and/or distribution of an organism. Processes considered are typically at a "local" scale, that is, at the same scale or smaller than the scale of the abundance/distribution pattern of interest.

Landscape ecology, a subdiscipline of ecology, is the study of how landscape structure affects the abundance and distribution of organisms (Fig. 1.2). Landscape ecology has also been defined as the study of the effect of pattern on process (Turner, 1989), where "pattern" refers specifically to landscape structure. The full definition of landscape ecology is, then, the study of how landscape structure affects (the processes that determine) the abundance and distribution of organisms. In statistical parlance, the "response" variables in landscape ecology are abundance/distribution/process variables, and the "predictors" are variables that describe landscape structure. Again, this includes indirect effects such as the effect of a biotic process (e.g., herbivory) on landscape structure, which in turn affects the abundance and/or distribution of the organisms of interest.
What is landscape structure?

The above definition raises the question, "What is landscape structure or pattern?" "Structure" and "pattern" imply spatial heterogeneity. Spatial heterogeneity has two components: the amounts of different possible entities (e.g., different habitat types) and their spatial arrangements. In landscape ecology these have been labeled landscape “composition” and “configuration,” respectively. The amount of forest or wetland, the length of forest
edge, or the density of roads are aspects of landscape composition. The juxtaposition of different landscape elements and measures of habitat fragmentation per se (independent of habitat amount) are aspects of landscape configuration (McGarigal and McComb, 1995).

What is a landscape-scale study?

A landscape ecological study asks how landscape structure affects (the processes that determine) the abundance and/or distribution of organisms. To answer this, the response variable (process/abundance/distribution) must be compared across different landscapes having different structures (Brennan *et al*., 2002). This imposes a fundamentally different design on a landscape-scale study than on a traditional ecological study. Each data point in a landscape-scale study is a single landscape. The entire study is comprised of several non-overlapping landscapes having different structures (Fig. 1.3).

FIGURE 1.3

(A) Patch-scale study: each observation represents the information from a single patch (black areas). Only one landscape is studied, so sample size for landscape-scale inferences is one. (B) Landscape-scale study: each observation represents the information from a single landscape. Multiple landscapes, with different structures, are studied. Here, sample size for landscape-scale inferences is four.
A landscape-scale study therefore has the following attributes: (1) individual data points in the study represent individual landscapes, i.e., the landscape is the observational unit; and (2) the size of a landscape depends on the scale at which the response variable responds to landscape structure. This typically depends on the scale at which the organism(s) in question move about on the landscape, or the typical scale of the process of interest. Note that the landscape is not a level of biological organization (King, this volume, Chapter 4). In fact, a landscape-scale study can be conducted at the individual, population, community, or ecosystem level of biological organization. In the following I provide two hypothetical examples of landscape-scale studies: the first is at the individual level and the second is at the population level.

Example 1. Individual-level study

Consider a researcher who is interested in identifying the factors that determine the fledging success rate of a particular bird species. The usual approach to this would be to locate a number of nests and their associated territories. For each nest, response variables measured might be the number of young fledged or proportion of eggs taken by predators, and the predictor variables might be availability of food in the territory or density of predators in the territory.

To include a landscape perspective in this study, the researcher would determine whether the landscape context of a territory (i.e., the landscape structure of the region surrounding each territory) affects the number of young fledged or the proportion of eggs taken by predators in that territory. This will require a completely different study design.

First, the researcher must determine a reasonable maximum size for individual landscapes. This is done by asking at what scale(s) he expects no effect of landscape structure on the response variables. This will generally depend on movement scales of the organisms in the study. For example, if the predator has a daily movement range of 3 km, then each landscape should be at least 3 km in radius. The researcher must then locate individual territories that are spaced far enough apart such that non-overlapping landscapes of this size can be delineated around them.

Predictor variables in the study will then include both the original predictor variables (local availability of food, local density of predators) and new predictor variables that describe the structure of the landscape surrounding each territory. These variables might include compositional variables (e.g., amount of wetland, amount of forest) and configurational variables (e.g., fragmentation and juxtaposition of habitat types). Optimally, the landscape...
When is a landscape perspective important?

It should be clear from the preceding that a landscape perspective is necessary whenever landscape structure can be expected to have a significant effect on the response variable (abundance/distribution/process) of interest. This leads to the somewhat frustrating catch-22 that one must conduct a landscape-scale study in order to determine whether a landscape perspective is necessary. Practically speaking, this implies that a landscape perspective is always necessary. However, we expect that there must be some, if not many, situations in which landscape structure does not have a large effect on the
response variable of interest. In retrospect, this tells us that a landscape perspective was not necessary for that problem. Avoiding a landscape-scale study when one is not necessary will be time- and money-saving. Can we delineate some circumstances in which a landscape perspective is not necessary?

When is a landscape perspective not necessary?

Probably the most straightforward situation in which a landscape perspective is not necessary is when a sufficient proportion of variation in the response variable can be explained with local variables only. The definition of “sufficient” will, of course, depend on the purpose of the study. One might argue that the rarity of landscape-scale studies (as defined above) in the ecological literature suggests that the proportion of variation explained by local variables is high in most cases. However, we know this is not the case. Reasons for the lack of landscape-scale studies are discussed in the following section.

It may also be possible to identify circumstances in which at least certain components of a landscape perspective can be ignored. For example, most studies that have examined the effects of landscape structure on ecological responses have found large effects of landscape composition (reviewed in Fahrig, 2003). In contrast, modeling studies suggest that there are many situations in which landscape configuration has little or no effect on abundance and/or distribution of organisms, such as when the landscape structure itself is highly dynamic or when the amount of habitat on the landscape is above a certain level (Fahrig, 1992, 1998; Flather and Bevers, 2002).

Impediments to landscape-scale studies

The impact of landscape structure has been largely ignored in ecology, mainly because of the perceived difficulty of conducting broad-scale studies. This constraint is disappearing with the increasing availability of remotely sensed data, allowing much easier measurement of landscape structural variables.

The main constraints that must now be overcome are cultural constraints within the discipline of ecology. For example, many ecologists view a “landscape-scale” study as simply a study that covers a large area. If a study including several patches of forest is “large” to that researcher, (s)he may call it a landscape-scale study; however, it is more correctly termed a “patch-scale” study (Fig. 1.3A). As I argue above, a landscape-scale study is one that examines the

...
effect of landscape context on a response variable. It answers the question, "Does the structure of the landscape in which this observation is imbedded affect its value?" This can only be answered by comparing the response variable across several landscapes with different structures (Fig. 1.3B).

Probably a greater hindrance to true landscape-scale studies is the current emphasis in ecology on experimental studies. By definition, landscape ecological studies look at the effect of a pattern (landscape structure) on a response. Judicious choice of landscapes with contrasting structures can result in a pseudo-experimental design, termed a "mensurative experiment" (McGarigal and Cushman, 2002; e.g., Trzcinski et al., 1999). In contrast, manipulative experimentation at a landscape scale (i.e., multiple experimental landscapes) is generally not possible. Where landscape-scale studies have been conducted, large effects of landscape structure (especially landscape composition) have been found. Inability to apply "in vogue" experimental methods to landscape ecological studies is no reason to ignore these effects or to avoid the landscape perspective.

Acknowledgments

I thank the Landscape Ecology Laboratory at Carleton for helpful discussions and comments, particularly Dan Bert, Julie Bouchard, Julie Brennan, Neil Charbonneau, Tom Contreras, Stéphanie Duguay, Jeff Holland, Jochen Jaeger, Maxim Larivée, Michelle Lee, Rachelle McGregor, Shealah Pope, Lutz Tischendorf, and Rebecca Tittler.

References

The geography of Eastern Europe includes several important ecological regions starting from the most easterly. These regions are characterized by unique landscapes as highlighted by the term “landscape ecology.”

The term “landscape ecology” was proposed to describe the concept of landscapes as integrated systems of interrelationships. This concept is closely related to the systems approach with the system being a dynamic condition.

A further development of the concept by the concept was the introduction of the idea of “landscapes as systems of interrelationships.” This idea was further refined by the concept of pattern and process in landscapes.

It was on this pattern that animal ecology and landscape ecology began to develop. The development of landscape ecology was a significant step forward in understanding the importance of landscape patterns and processes.

Notwithstanding these developments in landscape ecology, it became clear that understanding these patterns and processes was essential to understanding the functioning of landscapes. This understanding is vital for the development of effective conservation strategies.