Population Ecology in Spatially Heterogeneous Environments

LENORE FAHRIG and WILLIAM K. NUTTLE

Abstract

Historically, population ecologists have equated environmental spatial heterogeneity with habitat spatial structure. Early models represented habitat spatial structure simply as population subdivision into habitat patches. Later models included at first partially and then fully explicit representation of the spatial relationships among habitat patches. More recently, landscape population ecologists have broadened the view of spatial heterogeneity to include the composition and configuration of the whole landscape. A change in landscape composition refers to a change in the cover types in the landscape, the proportions of each, or both. A change in landscape configuration refers to a change in the spatial pattern of cover types, independent of any change in landscape composition. We hypothesize that changes in landscape composition generally have much larger effects on population persistence than changes in landscape configuration. Landscape configuration should have a large effect on population persistence when both (i) configuration has a large effect on among-patch movement of the organism and (ii) among-patch movement has a large effect on population persistence. The first condition should hold for species whose movement direction is constrained, and the second condition should hold either (i) when colonization of empty habitat is important for persistence or (ii) for species that require more than one type of habitat. We discuss extensions of these ideas to the effects of landscape configuration on ecosystem processes.

Introduction

The potential effects of environmental spatial heterogeneity on population dynamics and interactions have been of concern to population ecologists for decades. In this chapter, we review the ways in which spatial heterogeneity of the environment has been incorporated in models of population dynamics and interactions. We then discuss the current view of spatial heterogeneity
in landscape population ecology, and we review the evidence for effects of compositional heterogeneity and configurational heterogeneity on population ecology. Finally, we present a hypothesis that predicts the circumstances in which a change in landscape configuration should have a large effect on population ecology, and we discuss possible extensions of the hypothesis to effects of landscape configuration on ecosystem processes.

History of Environmental Spatial Heterogeneity in Population Ecology

The ways in which population ecologists incorporate environmental heterogeneity into population models have changed markedly over time. In this section, we review the implicit and explicit representation of environmental spatial heterogeneity in models of population dynamics and population interactions. Our review is limited to models in which the underlying environment is spatially heterogeneous in some way. We do not include the many spatially explicit population models in which the underlying environment is assumed to be homogeneous, such as reaction-diffusion models of population spread in a homogeneous environment (e.g., Lewis 1997), cellular automata models of disease spread in a homogeneous environment (e.g., Holmes 1997), or models exploring the generation of population spatial pattern in a homogeneous environment (e.g., Pacala and Levin 1997). Note that this review is not exhaustive; we have selected representative examples for each method of incorporating environmental spatial heterogeneity into models. In each case, we focus on the earliest examples that we know of, even though all the views of spatial heterogeneity persist simultaneously in the current literature.

Population Subdivision

The first theories of population ecology assumed spatial homogeneity of the environment (e.g., Verhulst 1838; Lotka 1925; Volterra 1926; Nicholson and Bailey 1935). However, with Gause's classic experiments in 1934, population biologists began to understand that population theories based on spatial homogeneity are likely to fail in the real world. Gause showed that a predator-prey relationship was "inherently self-annihilative": it could persist only when a portion of the prey population was protected by a "privileged sanctuary," or when reintroductions of prey occurred at intervals. This implied that persistence of natural populations depends on environmental patchiness or spatial heterogeneity. Laboratory experiments by Huffaker (1958) and Pimentel (1963) supported this conclusion.

Theoretical examination of the influence of environmental spatial heterogeneity on populations began with models that represented spatial heterogeneity as habitat subdivision, resulting in separation of the population into a number of subpopulations inhabiting habitat patches (e.g., Levins 1969, 1970; Reddingius and den Boer 1970; Hassell and May 1973; Roff 1974a,b; Vandermeer 1973; Levin 1974; Slatkin 1977; den Boer 1981; Shima and Ellner 1984; Chesson 1985). Metapopulation or patch occupancy models predicted the proportion of patches that were occupied, based on rates of local extinction and colonization (Figure 6.1). Local population dynamics were not considered in these models; the patches were either occupied or not occupied. The rate of colonization of empty patches was assumed to be independent of the spatial location of the patch (i.e., the models were not spatially explicit). In patchy population models, the population was divided into a number of subpopulations within which population dynamics and interactions occurred. Dispersal between subpopulations

![Figure 6.1. Representation of the progression of spatial heterogeneity in population models over four decades of ecological research. Time period for each model type represents the period over which it was established. Research using all model types continues to the present. Light gray rectangles represent habitat patches. In the metapopulation, or patch occupancy models, arrows represent colonization of patches; arrows only enter patches, to indicate that these models do not include migration from patches. In the source-sink model, the patch sizes represent relative patch quality. In the spatially explicit models, the arrows represent movement paths of individuals. In the spatially explicit with heterogeneous matrix, white, dark gray, and black areas represent matrix cover types; the black cover type represents a movement barrier (e.g., roads).](image-url)
Spatially Explicit Habitat Pattern

Although the early theory did examine the effect of spatial heterogeneity per se (habitat subdivision or patchiness), it was not spatially explicit; the spatial relationships among subpopulations were not modeled. The first approaches to including such spatial relationships in a heterogeneous environment were intermediate between patch occupancy or patchy population models and fully spatially explicit models. In dispersal corridor models, the population was again assumed to be composed of several subpopulations in patches. However, dispersal was only possible between a pair of subpopulations if they were spatially connected (Figure 6.1). Spatial connection could represent patches that were close enough to each other for dispersal to occur or patches that were connected by a dispersal route or dispersal corridor. Lefkovitch and Fahrig (1985) used this type of model to predict that population persistence depends on the number of patches and how they are interconnected. The source-sink model (Pulliam 1988) was a version of the dispersal corridor model for a population divided into two linked subpopulations in patches of unequal quality. Dispersal between the subpopulations was asymmetric, with a higher dispersal rate from the high-quality patch to the low-quality patch (Figure 6.1). Source-sink models were conceptually the end-points of one-dimensional models in which habitat quality was represented as a continuous environmental gradient that influences dispersal rate (Thomas and Kunin 1999). Such models predicted that the interaction between organism movement and an environmental gradient can alter predator-prey dynamics (McLaughlin and Roughgarden 1991; Benson et al. 1993; Pascual and Caswell 1997).

Models in which immigration or colonization depended on patch size and isolation (e.g., Fahrig and Palomo 1988; Hanski 1991, 1994) also represented an intermediate approach between non-spatially-explicit patchy or metapopulation models and the truly spatially explicit models discussed below. They generally predicted that population persistence increases with increasing patch size and decreasing patch isolation. Particular patches (large, nonisolated ones) were predicted to be important for metapopulation persistence and persistence of systems of interacting species (e.g., Moilanen and Hanski 1995). Hanski (2001) labeled this type of model spatially realistic.

Although metapopulation models and patchy population models have continued to be used and developed in population ecology, fully spatially explicit population models, called grid or lattice models, have been used in population ecology since the late 1980s (e.g., Nachman 1987; Fahrig 1991; Perry and Gonzalez-Andujar 1993; Dytham 1995; Wilson et al. 1998; Bonsall and Hassell 2000; Schiegg et al. 2002). These models represent the landscape as a spatial grid, in which each grid cell is either habitat or nonhabitat. Individuals or portions of the patch or cell populations move through the grid, according to movement parameters that determine movement distance and direction. Shugart (1998) labelled this type of model interactive.

A few grid models represent habitat quality as a continuous variable rather than the usual two-state variable (habitat or nonhabitat). For example, Colasanti and Grime (1993) assigned different resource levels to cells on a grid, arranged in a resource gradient. Engen et al. (2002) presented a model in which habitat quality varied continuously over the landscape and spatial heterogeneity was represented as spatial autocorrelation in local carrying capacities. Thomas and Kunin (1999) proposed representing habitat spatial heterogeneity in grid models by assigning a neighborhood value to each cell, which is a function of the distances to and qualities of all other cells on the grid.

Several studies have shown that the predictions of spatially explicit population models can be very different from the predictions of analogous non-spatially-explicit models (Adler and Nuernberger 1994; Bascompte and Solé 1994; Durrett and Levin 1994; Swihart et al. 2001; Buttel et al. 2002; Higgins and Cain 2002). For example, Swihart et al. (2001) compared predator-prey interactions in a patchy population model with global dispersal versus a spatially explicit model. They found large differences between the models in the predicted equilibrium levels of the predator and prey populations. The spatially explicit model predicted much higher abundances of the predator, and much lower sensitivity of the predator to habitat removal than did the non-spatially-explicit model. Higgins and Cain (2002) compared two-species competition in a metapopulation model and a spatially explicit model. They found that coexistence in the metapopulation model depended on a trade-off between competitive and dispersal abilities, whereas this trade-off was not necessary for coexistence to occur in the spatially explicit model.
What do spatially explicit population models predict regarding the effect of habitat spatial heterogeneity on population persistence? Spatial heterogeneity is typically highest at intermediate levels of habitat amount. Heterogeneity increases with increasing fragmentation of habitat, where fragmentation is defined as the breaking apart of habitat, independent of habitat loss (Figure 6.2). Spatially explicit population models predict that population persistence increases with increasing amount of habitat on the landscape and decreases with increasing fragmentation of the habitat (Henein et al. 1998; Hill and Caswell 1999; With and King 1999; Fahrig 2001; Flather and Bevers 2002). These models therefore predict that (i) a reduction in habitat from a high to a moderate amount (A/B to C/D in Figure 6.2) should produce a negative effect of increasing heterogeneity on population persistence, (ii) an increase in habitat from a low to a moderate amount (E/F to C/D in Figure 6.2) should produce a positive effect of increasing heterogeneity on population persistence, and (iii) a shift from low to high fragmentation (A/C/E to B/D/F in Figure 6.2) should produce a negative effect of increasing heterogeneity on population persistence.

Empirical studies confirm the predicted positive effect of habitat amount but do not generally confirm the predicted negative effect of habitat fragmentation (breaking apart of habitat; reviewed in Fahrig 2003). We are aware of 13 empirical studies of the effects of habitat fragmentation (independent of habitat amount) on the abundance and/or distribution of individual species (McGarigal and McComb 1995; Collins and Barrett 1997; Wolff et al. 1997; Collinge and Forman 1998; Meyer et al. 1998; Rosenberg et al. 1999; Trzcinski et al. 1999; Drolet et al. 1999; Flather et al. 1999; Villard et al. 1999; Caley et al. 2001; Langlois et al. 2001; Hovel and Lipcius 2001; reviewed in Fahrig 2003). In general, these studies indicate that habitat loss has a much larger effect than habitat fragmentation on population abundance and/or distribution. Of the species that were found to be affected by fragmentation, 9 showed declines and 17 showed increases in abundance or distribution with increasing fragmentation. Note that the observed positive effects of fragmentation cannot simply be explained as responses by "weedy," habitat generalist species. For example, McGarigal and McComb (1995) studied abundances of bird species that nest only in mature forest, in response to forest amount and fragmentation. They found that of the seven species that responded to fragmentation, six responded positively. Therefore, the direction of the relationship between habitat heterogeneity and population persistence is not consistently positive or negative. Possible explanations for both positive and negative effects of fragmentation are reviewed in Fahrig (2003).

For predator-prey or host-parasite interactions, increasing habitat heterogeneity by reducing habitat amount and/or increasing habitat fragmentation can result in outbreaks or persistently higher levels of the of the prey/host (Kareiva 1987; Roland 1993). It is hypothesized that habitat loss and fragmentation disrupt the ability of the predator or parasite to find and control the prey/host populations in time to avoid outbreaks. With et al. (2002) demonstrated the plausibility of this mechanism in an experimental study of the effects of habitat loss and fragmentation on patterns of aggregation of an insect predator-prey system. Some researchers have modeled effects of spatial heterogeneity of habitat on...
predator-prey interactions using reaction-diffusion equations, where diffusion occurs along an environmental gradient (McLaughlin and Roughgarden 1991; Benson et al. 1993; Pascual and Caswell 1997). These models predict that the environmental gradient interacts with organism movement to determine predator-prey dynamics, which can include outbreaks and chaos.

Landscape Composition and Configuration

Most of the literature discussed so far deals implicitly or explicitly with only one kind of habitat, the habitat used by the species in question. Within this framework, consideration of spatial heterogeneity has increased over time from homogeneity to patchiness with global dispersal, to variation in patch sizes and connectedness, and finally to explicit spatial representation of the habitat on the landscape (Figures 6.1 and 6.2). The vast majority of current studies of the effect of environmental spatial pattern on population ecology still describe the landscape in terms of habitat and nonhabitat (nonhabitat is also called matrix).

In real landscapes, the matrix is not homogeneous but is composed of various cover types (final panel in Figure 6.1). Some of the cover types will represent habitat for the species in question. These may include different habitat cover types representing habitats that vary in quality, resulting in, for example, different reproductive rates. Different cover types may also provide different types of resources that are needed at different times during the organism’s life history (e.g., feeding habitat, mating habitat). Other cover types represent nonhabitat, which, again, may differ in quality, for example, in the probability of mortality of the organism while it is in the cover type.

What effect does taking account of this additional spatial heterogeneity have on our understanding of population ecology? Landscape ecologists describe landscape structure in terms of two main components: landscape composition and landscape configuration (Dunning et al. 1992; McGarigal and McComb 1995). Landscape composition refers to the different cover types present in the landscape and the proportions of each. Compositional landscape heterogeneity increases as the number of different cover types increases (Figure 6.3, from A to B or C to D), and if they occur in more similar proportions (Figure 6.4, from A to C or B to D). Compositional heterogeneity can be measured, for example, the Shannon-Wiener diversity index applied to the number and proportions of cover types in the landscape (e.g., Jonsen and Fahrig 1997).

A change in landscape configuration refers to a change in the spatial pattern of cover types independent of any change in landscape composition (Figure 6.4). Configurational landscape heterogeneity increases with increasing interspersion of the different cover types, accompanied by increasing edge density in the landscape (Figure 6.4, from A to B or from C to D). Configurational heterogeneity can be measured, for example, indices of edge density, shape complexity, edge contrast, and landscape subdivision (McGarigal 2002). Note that it is possible for landscape configuration to change without a change in landscape composition (Figure 6.4). Similarly, a change in the cover types while maintaining patch locations represents a change in landscape composition, with no change in landscape configuration. However, landscape composition and configuration are not completely independent; in particular, it is not possible to change the proportions of the different cover types (a change in composition) without changing landscape configuration.

![Figure 6.3](image-url) Illustration of the two components of compositional heterogeneity. Compositional heterogeneity increases with increasing number of cover types (from A to B, or C to D) and with increasing degree of evenness of representation of the cover types (from A to C, or B to D).
reduction in population persistence probability. For example, in Figure 6.3, landscape D contains less dark gray habitat than does landscape C, and D is more heterogeneous than C. If dark gray represents wetland and the species of interest relies solely on wetland habitat, this increase in heterogeneity will result in a reduction in the persistence probability of the population.

However, if the species relies on more than one kind of habitat, an increase in compositional heterogeneity may permit the species to persist in a landscape in which it otherwise would not. For example, Figure 6.3C contains no white habitat. If the species requires both dark gray and white habitats for persistence, it will not occur in landscape C but may occur in landscape D. This represents a positive effect of compositional heterogeneity on population persistence. The cooccurrence of two or more required habitat types within a landscape was labeled landscape complementation by Dunning et al. (1992). The importance of landscape complementation was demonstrated by Pope et al. (2000), who showed that leopard frog populations were more likely to occur in landscapes containing both large numbers of breeding ponds and accessible terrestrial habitat for foraging during the summer. Similarly, Thies and Tschamntke (2002) found that heterogeneous landscapes were more likely to harbor populations of parasites of an agricultural pest species than were homogeneous landscapes, presumably because the heterogeneous landscapes provided habitats containing resources for the parasites in addition to those offered by the habitats containing the pests.

Species that require landscape complementation may also be positively affected by increasing configurational heterogeneity. For the same landscape composition, a more heterogeneous landscape will have more interdigitation of different habitat types (Figure 6.4: from A to B, and from C to D). This should increase landscape complementation (Law and Dickman 1998; Tschamntke et al. 2002).

Relative Effects of Landscape Composition and Configuration on Population Persistence: A Hypothesis

The only empirical studies of which we are aware that have examined the relative effects of landscape composition and landscape configuration are the studies discussed above (and reviewed in Fahrig 2003) on the effects of habitat fragmentation (a component of landscape configuration) and habitat loss (a component of landscape composition). These studies indicate that effects of fragmentation are generally much weaker than the effects of habitat loss. Does this conclusion hold for landscape composition and configuration in general? Are there situations in which the effect of landscape configuration is expected to be large? In this section, we propose a hypothesis for the conditions under which configuration should have a large effect on population persistence.
affected by landscape configuration if landscape configuration affects among-patch movement of nitrate. This leads to the interesting conclusion that landscape configuration could indirectly affect a population through its effect on an ecosystem process. In the section “Application to Ecosystem Processes” below, we present some examples of how landscape configuration might affect ecosystem processes. In the following, we present our hypothesis ignoring these indirect effects; we limit our consideration of movement to the movement of the organism in question.

We hypothesize that the effect of landscape configuration on population persistence is through its effect on (organism) movement, either facilitating or hindering habitat accessibility. Landscape configurations that facilitate habitat accessibility can indirectly increase the number of births and decrease the number of deaths in the population. This can occur through two processes, “landscape complementation” and “landscape supplementation” (Dunning et al. 1992). As discussed above, landscape complementation occurs when all required cover types are accessible to an organism that needs more than one landscape cover type to complete its life history. Landscape supplementation occurs when the organism can move among several resource patches of the same type to obtain sufficient resources for survival and reproduction. In either case, landscape configuration may facilitate or limit the ability of the organism to move about and obtain the resources required to avoid mortality and to reproduce successfully. For example, if roads represent a barrier to movement of the organism, then the particular placement of roads on a landscape may affect the ability of the organism to obtain crucial resources, which will affect the reproduction and/or mortality rate of the population, ultimately affecting its persistence.

Landscape configuration affects among-patch movement within the landscape when movement direction is highly constrained by the landscape. For example, some species are very reluctant to cross certain types of boundaries in the landscape (Tischendorf 2001). If the probability of crossing a boundary into a particular cover type (e.g., road surface) is low, this cover type represents a movement barrier in the landscape. If an organism is very reluctant to cross the boundary of its habitat into matrix, the configuration of habitat can have a large effect on population persistence. In this case, each habitat patch is isolated, so the persistence of the population in the landscape depends on the size of the largest piece of habitat (Figure 6.5). Movement within a stream network represents another example of highly constrained movement; Cumming (2002) showed that the form of the stream network can have a large effect on overall movement rate through the network.

Recent simulation studies suggest that strong effects of boundary type on boundary-crossing rates leads to a large effect of landscape configuration on among-patch movement rate through the landscape. Goodwin and Fahrig (2003) conducted simulations of animal movement on a grid containing habitat and two matrix cover types. They assumed that animal movement
systems with larval habitat upstream of spawning habitat, even if they have the same amount of habitat (M. Power, personal communication).

It is important to note here that a large effect of landscape configuration on among-patch movement does not necessarily imply a large effect of landscape configuration on population persistence, relative to the effect of landscape composition, for several reasons. First, landscape composition also affects among-patch movement. Two empirical studies have examined the independent effects of landscape composition (habitat amount) and configuration (habitat fragmentation) on animal movement (Béïsle et al. 2001; With et al. 2002). Both found much larger effects of composition than configuration on movement. Second, population persistence at the landscape scale is ultimately determined by numbers of births and deaths, not movement within the landscape. Movement of an individual from one location to another within the landscape does not by itself affect overall population size. It can only affect population size indirectly if, by entering a new location, the individual changes its chance of reproducing or surviving. Landscape composition affects births and deaths directly, as well as indirectly through its effect on animal movement. Landscape configuration, on the other hand, only affects births and deaths indirectly through its effect on movement. Finally, some theoretical studies predict an interaction effect between composition and configuration, in which configuration affects population persistence only below certain threshold composition values (Fahrig 1998; Flather and Bevers 2002).

If landscape configuration affects population persistence through its effect on among-patch movement, then landscape configuration should have a large effect on population persistence when both (i) configuration has a large effect on among-patch movement and (ii) among-patch movement has a large effect on population persistence.

The hypothesis can be summarized as follows. (1) Landscape composition generally has a much larger effect than landscape configuration on population persistence, because composition directly affects births and deaths, whereas configuration only affects births and deaths indirectly through its effect on movement. (2) Landscape configuration has a large effect on among-patch movement for species whose movement direction is highly constrained. (3) Among-patch movement has a large effect on population persistence (i) when colonization of empty habitat is important for persistence or (ii) for species that require more than one type of habitat (landscape complementation). Note that condition (i) will occur when the probability of local extinction is high (e.g., high seasonal mortality) and following habitat restoration (Huxel and Hastings 1999). (4) Finally, landscape configuration has a large effect on population persistence when conditions under both (2) and (3) hold simultaneously. We emphasize that this is a general hypothesis; it is not limited to any particular sorts of species or landscapes, but it does depend on the assumption that the landscapes are correctly mapped from the point of view of the species of interest (see...
above). Interestingly, this hypothesis is not consistent with metapopulation theory, which predicts large effects of landscape configuration on population persistence, even for randomly moving organisms (Hill and Caswell 1999); a possible explanation for this difference is discussed in Fahrig (2002).

Recall here that the effect of landscape configuration on a population can also occur indirectly through its effect on movement of an interacting species or other mass, energy, or information that affects the species of interest. Our hypothesis can therefore be extended to state that landscape configuration can have a large effect on a population when both (i) movement direction of the interacting species, other mass, energy, or information is highly constrained, and (ii) the interacting species, other mass, energy, or information has a large effect on population persistence.

At this point, our hypothesis is supported only through the verbal arguments above; to date it has not been directly tested. Empirical testing will require comparisons across species and across landscapes. For example, we may know from previous studies that small mammal populations undergo frequent local extinctions (Merriam and Wegner 1992), which implies that movement is important for small mammal population persistence. From our hypothesis, we could then predict that the abundance of a small mammal species that shows strong avoidance of roads (i.e., its movement is highly constrained by roads) should be affected by a change in landscape configuration, whereas the abundance of a small mammal species that shows no behavioral response to roads should not be affected by a change in landscape configuration. To test this prediction, we would need first to study small mammal movement responses to roads to identify species that avoid roads and species that do not respond to roads. We would then compare the abundances of these small mammal species across a set of landscapes that vary in configuration (e.g., degree of habitat fragmentation). It will be important to select the landscapes in such a way that we can control for the effects on small mammal abundance of both road density and the amount of small mammal habitat (e.g., forest) in the landscapes. In particular, it is important that neither of these landscape composition variables is correlated with landscape configuration across the set of landscapes chosen for the study. There are clearly several challenges inherent in this type of research; these are discussed in Brennan et al. (2002).

Application to Ecosystem Processes

We suggest that our hypothesis can be extended to the effects of landscape composition and configuration on ecosystem processes. A few examples illustrate parallels among the movement and persistence of organisms on the landscape and the flux and transformation of energy and nutrients that control ecosystem processes. Here, too, the composition of the landscape exerts the most direct influence over the net ecosystem functions of the entire landscape. Indeed, the trophic state of an ecosystem (i.e., oligotrophic, mesotrophic, or eutrophic) is often defined in terms of the type and biomass density of the primary producers (i.e., photosynthesis).

Landscape configuration may influence ecosystem function, depending on the distribution of areas of production and uptake relative to the pattern of movement of nutrients and energy, which may be affected by barriers that impede these fluxes. For example, consider the net processing of nutrients that move through an ecosystem in surface water and groundwater. Clearly, there will be different effects on nutrient processing of wetlands taking up nutrients mobilized from farm fields, depending on whether the wetlands are located generally upstream or downstream of the farm fields. Where the conformation of the landscape generally acts to retard flow, nutrients are more subject to uptake and transformation by vegetation and microbial processes or to sequestration by sorption and sedimentation (Vollenweider 1975; Seitzinger 2000; Mitsch et al. 2001). Indeed, reengineering the landscape to promote these processes constitutes one of the principal tools used in environmental remediation and restoration (Mitsch et al. 2001; NRC 2002; Toth et al. 2002). Barriers to the movement of organisms can also affect ecosystem function. For example, fencing to exclude direct access by livestock to natural water bodies is an effective strategy for reducing the flux of nutrients into these surface water bodies and consequent effects on water quality and ecosystem processes downstream (NRC 2002; Mitsch et al. 2001). In the ocean, the seasonal development of strong, thermal stratification constrains phytoplankton from moving below the photic zone, and this triggers the increase in primary productivity observed as the spring plankton bloom (Sverdrup 1953). All these examples suggest that landscape configuration has its largest effect on ecosystem processes in situations where movement is constrained and/or directional.

The hypothesis may also apply to the propagation of disturbances across a landscape. For example, it appears that landscape configuration affects the spread of forest fire only when the fire is strongly limited by forest boundaries. In this situation, the total amount of forest burned is lower in landscapes where the forest is fragmented into small patches than in landscapes where the forest occurs in large tracts. Fires that start in small patches are unlikely to spread to the rest of the forest because there is low fuel availability between forest patches (Weir et al. 2000; Ricotta et al. 2001; Pitkänen et al. 2003). However, this boundary response can be reduced or eliminated in high winds, in very dry weather conditions, and in landscapes where there is a small difference in fuel load across the edge (Hargrove et al. 2000; Bessie and Johnson 1995; Moritz 2003). In these conditions, landscape configuration is unlikely to affect fire spread (Ricotta et al. 2001). Thus, landscape configuration only affects fire spread in situations where fire movement is constrained by forest boundaries (Figure 6.5, where the arrows now represent movement of fire rather than movement of organisms).
Temporal Heterogeneity

In this paper, we have discussed the effects of spatial heterogeneity on population ecology. We do not mean to imply that temporal heterogeneity is unimportant. A small number of studies (all theoretical) have examined the combined effects of spatial heterogeneity and temporal heterogeneity on population persistence and population interactions. In general, these studies find that the rate and frequency of change of the landscape is extremely important. Fahrig (1992) and Bhar and Fahrig (1998) predicted that the rate of change of the landscape is much more important than habitat configuration in affecting population persistence. Keymer et al. (2000) predicted that the rate of landscape change has a large effect on the extinction threshold (i.e., the minimum amount of habitat required for population persistence). Finally, Bowers and Harris (1994) and Gourbière and Gourbière (2002) predicted that the outcome of interspecific competition depends strongly on the rate of environmental change.

Conclusions

The incorporation of environmental spatial heterogeneity into population ecology has been a gradual process over a period of several decades. The concept itself has evolved from simple population subdivision, to effects of patch size and isolation, to spatially explicit representations of habitat, to spatially explicit representations of landscapes. At each level of heterogeneity, there are important predicted effects on population ecology. The overall picture is quite complicated, however, because although the way that population ecologists view environmental spatial heterogeneity has changed over time (Figure 6.1), all these views persist simultaneously in the current literature. In addition, the characteristics of the species studied (e.g., movement behavior) influence how the different aspects of spatial heterogeneity affect a population. Successful generalization will depend on cross-study comparisons, which, in turn, will depend on clear delineation of the important aspects of heterogeneity and species attributes. For example, it will be important to differentiate clearly between compositional heterogeneity and configurational heterogeneity, as these two aspects can have different predicted effects (Fahrig 2000).

Nevertheless, some tentative generalizations are possible. First, where increasing compositional heterogeneity reduces the amount of habitat available for a species, this will have a negative effect on population persistence. Second, information on organism movement behavior, in particular the responses of organisms to boundaries, will be important for predicting the likely effect of configurational heterogeneity on population ecology. Third, species that require landscape complementation can benefit from increases in both compositional and configurational heterogeneity. Landscape complementation will therefore be a central issue in developing a general understanding of the effects of spatial heterogeneity on population ecology.

Acknowledgments. We thank the Landscape Ecology Laboratory at Carleton University for comments on an earlier draft, particularly Julie Brennan, Neil Charbonneau, Stéphanie Duguay, Kringen Henein, Jeff Holland, Jochen Jaeger, Rachelle McGregor, Lutz Tischendorf, and Rebecca Tittler. Discussions with Gary Lovett, Hugh Possingham, and Mary Power and the comments of two anonymous reviewers were also very helpful. This work was funded by a grant from the Natural Sciences and Engineering Research Council of Canada.

References

II. Perspectives from Different Disciplines

Verhulst, P.F. 1838. Notice sur la loi que la population suit dans son accroissement. Correspondence Mathématique et Physique, 10: 113–121.

7

Heterogeneity Processes Modeling

CHRISTINA TACCOLI

Abstract

Heterogeneity of the landscape is an important aspect of the hydrologic system. Heterogeneity is a primary driver of the hydrology. Observations from within-canopy studies and spatial variation in physical properties of the landscape represent the scale and type of heterogeneity. This chapter focuses on how heterogeneity and its effects on hydrologic processes, as well as the roles of heterogeneity in hydrologic processes, are described, and approaches for landscape hydrologic modeling are discussed. Traditional deterministic and probabilistic approaches, as well as mathematical methods, are used to address heterogeneity. The chapter reviews the process heterogeneity approach, which focuses on model structure, hydrologic and ecologic interactions, and the scale and type of the landscape.

Introduction

Analysis of heterogeneity is fundamental to characterizing and ultimately understanding the behavior of its forms—solid, liquid, and gaseous phases. Heterogeneity is transported and stored in the landscape. Landscape heterogeneity depends both on the spatial and temporal scales of particular hydrologic processes. Heterogeneity in the landscape include fluxes (e.g., evapotranspiration, surface runoff, infiltration), and the rates and magnitudes of these fluxes. This chapter discusses the implications of landscape heterogeneity on hydrologic processes and their interactions with ecological processes.