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Abstract: An algorithm is presented for automated detection–delineation of coniferous tree regeneration that combines
strategies of several existing algorithms, including image processing to isolate conifer crowns, optimal image scale de-
termination, initial crown detection, and crown boundary segmentation and refinement. The algorithm is evaluated using
6-cm pixel airborne imagery in operational regeneration conditions typically encountered in the boreal forest 5–10 years
after harvest. Detection omission and commission errors as well as an accuracy index combining both error types were
assessed on a tree by tree basis, on an aggregated basis for each study area, in relation to tree size and the amount of
woody competition present. Delineation error was assessed in a similar manner using field-measured crown diameters
as a reference. The individual tree detection accuracy index improved with increasing tree size and was >70% for trees
larger than 30 cm crown diameter. Crown diameter absolute error measured from automated delineations was <23%.
Large crown diameters tended to be slightly underestimated. The presence of overtopping woody competition had a
negligible effect on detection accuracy and only reduced estimates of crown diameter slightly.

Résumé : Cet article présente un algorithme pour la détection et la délinéation automatique de la régénération de coni-
fères. Il combine les stratégies de plusieurs algorithmes existants incluant le traitement d’image pour isoler la cime des
conifères, la détermination de l’échelle optimale de l’image, la détection préliminaire de la cime et la segmentation du
contour de la cime avec son raffinement. L’algorithme est évalué en utilisant l’imagerie aérienne avec des pixels de
6 cm dans des conditions opérationnelles de régénération typiquement rencontrées en forêt boréale cinq à dix ans après
la récolte. Les erreurs d’omission et de commission ainsi qu’un indice de précision combinant les deux types d’erreurs
ont été analysés individuellement pour chaque arbre et pour des regroupements d’arbres dans chaque aire d’étude en
relation avec la taille des arbres et le nombre de compétiteurs présents. L’erreur de délinéation a été analysée de façon
similaire en utilisant le diamètre des cimes mesurées sur le terrain comme référence. L’indice de précision pour la dé-
tection des individus augmente avec la taille de l’arbre et dépasse 70 % pour les arbres dont la cime a plus de 30 cm
de diamètre. L’erreur absolue de délinéation automatique du diamètre de la cime est inférieure à 23 %. Les grands dia-
mètres de cime tendent à être sous-estimés. La présence de compétiteurs qui surpassent la régénération a un effet négli-
geable sur la précision de détection et réduit seulement légèrement les valeurs estimées du diamètre des cimes.

[Traduit par la Rédaction] Pouliot et al. 2345

Introduction

Sustainable forest management depends on successful re-
generation of disturbed forest areas. To ensure regeneration
success, forestry professionals require timely information re-
garding the abundance, distribution, and size of crop trees
and noncrop (e.g., nonconiferous vegetation) competitors.
Currently, field-based monitoring is the principal means used
to collect information regarding regeneration status. Such
monitoring is usually conducted by qualitative visual assess-
ment and (or) quantitative assessment using statistically
based plot sampling designs (Pitt et al. 1997). The objective
of the former is to use expert knowledge in the rapid collec-
tion of a large amount of information, but the procedure is

highly subjective. Plot-based assessment methods minimize
subjectivity, but are highly labour intensive and costly.

Remote sensing based methods have the potential to pro-
vide the required information in a more objective manner, at
lower cost, and with greater coverage than is attainable using
field sampling. The application of remote sensing for regen-
eration assessment has, to date, largely involved manual in-
terpretation of large-scale photography. Results have shown
that useful estimates of conifer stocking, species, crown size,
health condition, and stratification of key vegetation com-
plexes can be made (Goba et al. 1982; Hall 1984; Hall and
Aldred 1992; Pitt and Glover 1993; Pitt et al. 2000). How-
ever, these methods have not found widespread use because
they tend to be highly specialized, time consuming, and sub-

Can. J. For. Res. 35: 2332–2345 (2005) doi: 10.1139/X05-145 © 2005 NRC Canada

2332

Received 4 October 2004. Accepted 29 June 2005. Published on the NRC Research Press Web site at http://cjfr.nrc.ca on
28 October 2005.

D.A. Pouliot1 and D.J. King. Geography and Environmental Studies, Carleton University, 1125 Colonel By Drive, Ottawa, ON
K1S 5B6, Canada.
D.G. Pitt. Canadian Forest Service, Great Lakes Forestry Centre, P.O. Box 490, Sault Ste. Marie, ON P6A 5M7, Canada.

1Corresponding author (e-mail: darren.pouliot@ccrs.nrcan.gc.ca).



jective, requiring specially trained personnel and equipment
(King 2000).

Automated tree detection–delineation using high spatial
resolution remotely sensed imagery provides a potentially
efficient means to acquire information needed for forest re-
generation management decisions. Tree detection can pro-
vide estimates of tree abundance and spatial pattern that are
useful for evaluating density and stocking objectives as well
as inputs for growth modeling. Delineation of individual tree
crowns can potentially enhance species composition inven-
tory through analysis of within-crown spectral data (Leckie
et. al. 2003; Leckie et al. 2005), spatial data (Haddow et al.
2000; Erikson 2004), lidar data (Holmgren and Persson 2003),
and crown shape (Brandtberg 1999). Recent research has
also shown the potential for mapping damage due to insects
and disease (Leckie et al. 2004). Further, delineated crown
dimensions can be used to model tree structural variables
such as height, volume, or biomass (Culvenor 2000; Hayward
and Slaymaker 2001; Persson et al. 2002).

Much of the research on image-based automated tree
detection–delineation has focused on mature forests for pur-
poses of forest inventory. Techniques are varied, but gener-
ally use the same basic radiometric properties of tree crowns.
These key properties are the association of the approximate
crown apex with a local maximum image brightness value
and decreasing brightness towards the crown edges. This ra-
diometric crown model has been described as analogous to
that of a mountainous landscape, where peaks are the high-
est elevation, approximately representing crown apexes, and
surrounding valleys are the lower elevations, representing
the space between crowns or where crowns overlap or touch.
Some algorithms are explicitly linked to this concept. One of
the first, developed by Gougeon (1995), incorporates a pro-
cedure to outline the local brightness “valleys” between crowns.
A rule set is then applied to the valley network to refine
crown boundaries and split and merge crowns. However, the
majority of algorithms approach detection–delineation as two
separate tasks. These methods typically apply some method
of local maximum detection to first detect crowns and then
use these as reference points for crown delineation. Methods
applied for tree detection include (1) enhancement and thres-
holding (Dralle and Rudemo 1996; Walsworth and King 1999),
where a global image operation such as smoothing or high-
pass filtering is applied and the resulting pixel brightness
values within a defined range are extracted as estimates of
tree locations; (2) template matching (Pollock 1999) involving
the correlation between a geometric–radiometric tree crown model
and image data; (3) multiscale edge detection (Brandtberg and
Walter 1998), where the occurrence of edges over several im-
age scales is examined to define a region in which the bright-
est pixel value is taken as a representative location of the tree
apex; (4) local maximum filtering (Pinz 1999; Culvenor 2000;
Gougeon and Leckie 1999; Niemann et al. 1999; Wulder et al.
2000; Pitkanen 2001; Pouliot et al. 2002; Erikson 2003),
where the maximum pixel brightness value in a moving-window
sample of a specified size is taken to represent the tree apex;
and (5) gradient following (Persson et al. 2002), where max-
ima are identified by following the local upward gradient
from a given pixel to the brightest local value.

Tree delineation has been accomplished mostly through
forms of (1) spatial clustering (Brandtberg and Walter 1998;

Walsworth and King 1999; Erikson 2003) involving the iden-
tification of groups of pixels related by defined criteria, (2)
valley detection based on local minima (Gougeon 1995; Persson
et al. 2002), (3) local edge detection (Pouliot et al. 2002),
and (4) a combination of valley detection and spatial cluster-
ing (Culvenor et al. 2000). A more detailed review of detec-
tion–delineation algorithms is provided in Culvenor (2003).

Each of these algorithms has been shown to provide rea-
sonable results in the specific imaging and scene conditions
used. However, the complementary benefits of these ap-
proaches have not been combined into an integrated algo-
rithm that could be robust under a variety of operational
forest conditions. In addition, very little development and
evaluation has been carried out in regenerating forests, where
canopies tend to range from open to closed over relatively
fine spatial scales and crown sizes can be highly variable. In
regenerating forests, algorithms developed by Gougeon and
Leckie (1999) and Pouliot et al. (2002) have been evaluated.
The results of these studies were encouraging, but both were
conducted in controlled experimental study sites that were
not representative of typical postdisturbance conditions that
would exist after clear-cut harvesting, planting with natural
ingress, or intense fire. In these conditions, tree size and
spacing is considerably more variable, competing woody stems
often overtop conifers, topography is wide ranging, and ground
brightness is more inconsistent. Thus, it is difficult to deter-
mine whether any of the approaches would provide suitable
results in more operational conditions.

This research was designed to address the issues identified
previously, that is, to combine beneficial and complementary
aspects of existing detection–delineation algorithms to pro-
duce a new algorithm that is robust under the diverse condi-
tions encountered in typical conifer regeneration conditions.
Specifically, the objectives of the research were to (1) de-
velop an integrated and robust tree detection–delineation
algorithm for operational regenerating coniferous forest con-
ditions imaged with high spatial resolution imagery and (2)
evaluate the algorithm accuracy and sources of error in rela-
tion to tree size and amount of woody competition.

Materials and methods

Study site
The study site consisted of three operational cutovers lo-

cated northeast of Sioux Lookout, Ontario, Canada, in the
Buchanan Inc. forest management unit. The three cutovers
represent various regeneration conditions, most distinctly marked
by differences in competing vegetation levels that reflect differ-
ent soil and microclimate conditions. These sites were labeled
high (50°46′N, 91°25′W), moderate (50°18′N, 91°39′W),
and low (50°50′N, 91°21′W) competition (Fig. 1).

The high site was planted in 1992 with white spruce (Picea
glauca (Moench) Voss). Species composition at the time of
this study was 89% white spruce, 3% jack pine (Pinus
banksiana Lamb.), and 8% balsam fir (Abies balsamea (L.)
Mill.). Total conifer density was 1784 stems/ha. The average
crown diameter was 77 ± 44 cm (mean ± standard deviation
(SD)), ranging from 12 to 290 cm. The large crowns in the site
were advanced regeneration that was present postdisturbance.
The average tree height was 138 cm. The site supported a
variety of herbaceous and woody noncrop vegetation spe-
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cies, indicative of rich soil with moderate moisture. Woody
vegetation was abundant, with an approximate density of
8500 stems/ha for trees above 2 m in height. This layer was
dominated by alder (Alnus spp.), but also contained aspen
(Populus tremuloides Michx.). Both species considerably over-
topped the crop trees. Grass was the most abundant herbaceous
vegetation, occurring in patches where woody competition
density was low. Topography was slightly sloping towards
the southwest, with occasional small drainage channels. The
size of the cut area was 11 ha, approximately 20% of which
was sampled by the image transect.

The moderate site was planted with black spruce (Picea
mariana (Mill.) BSP) in 1997, but in 2002 species composi-
tion was about 50% jack pine because of natural ingress. To-
tal conifer density was 3172 stems/ha. The average crown
diameter was 59.5 ± 33 cm, ranging from 6 to 135 cm. Aver-
age tree height was 110 cm. Competition consisted of pockets
of high-density aspen and lower density white birch (Betula
papyrifera Marsh.), with an overall density of 3400 stems/ha
for trees above 2 m in height. Aspen tended to be consider-
ably taller than birch, and both typically overtopped the spruce
and pine. Herbaceous vegetation was dominated by grass
and moss in moist valley areas. In higher areas, low woody
shrubs were abundant. Topography was rolling, with associ-
ated wet areas in depressions and dry areas on higher ground.
The size of the cut area was 20 ha, approximately 18% of
which was sampled by the image transect.

The low site consisted of a 30:70 mixture of jack pine and
black spruce, respectively. Spruce was planted in 1995 and
was typically smaller than the natural ingress pine. Total co-
nifer density was 4670 stems/ha. The average crown diame-
ter was 55 ± 39 cm, ranging from 5 to 210 cm. The average
tree height was 93 cm. The site had little to no competing
vegetation, with no woody competitors greater than 2 m in

height. Woody species included alder and willow (Salix spp.),
while herbaceous competitors included Labrador tea (Ledum
groenlandicum Oeder), mosses, lichens, and some sparse
grasses. Topography was similar to the moderate site, with
slightly rolling hills and associated wet and dry areas. The
size of the cut area was 7 ha, approximately 34% of which
was sampled by the image transect.

Field data
Sample plots were selected along a predetermined transect,

with the objective of sampling the full range of conifer tree
species, tree density, crown sizes, and woody competitor
abundance on each of the sites. Circular plots with a radius
of 3 m were used. For visual reference in subsequent imag-
ery, plot centres were marked with a 40 cm × 40 cm white
board, mounted on a 1.0 m tall stake. Each tree within the
plot was assessed in relation to the plot centre by measuring
the distance and direction from the centre to the tree. For
each conifer tree in the plot, the species, stem height, stem
diameter at ground level, and crown diameter (oriented north–
south and east–west) were recorded. Position and tree mea-
surement data were used to create a GIS layer for validation
of automated detection–delineation results. The height of
each woody stem within the plot was also recorded as a
measure of competition.

Image data
Images were acquired under leaf-off conditions on 11 May

2002 between 1130 and 1500 local time, using a Duncantech
MS3100 CIR digital camera with a 14 mm focal length
Sigma aspherical lens. The camera was mounted in the front
bay of a boom system attached to the undercarriage of a Bell
Ranger helicopter. The camera uses beam-splitting optics to
separate irradiance into three spectral bands that are imaged
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simultaneously by three charge-coupled devices (CCD). The
spectral bandwidths are green (500–600 nm), red (600–
700 nm), and near infrared (NIR, 700–900 nm). Each CCD
comprises 1300 × 1000 photosites, which translates to 8-bit
multispectral images of the same format. Shutter speed was set
individually for each band to 1/200 s, 1/143 s, and 1/111 s,
respectively, by viewing histograms of the target areas in
flight. A flying height of 182 m was used to capture images
with ~6 cm nominal ground pixel size and a spatial coverage
of 83 m × 60 m. Flying speed varied between 2.2 and
3.3 m/s.

Tree detection–delineation algorithm
The detection–delineation algorithm developed for this study

consists of the four stages shown in Fig. 2. The following
sections describe in detail the specific processing carried out
in each stage.

Image preprocessing
Image preprocessing is a flexible stage where the user se-

lects the best spectral band and (or) enhances the image data
to maximize crown distinction from background cover types
and thus optimize algorithm performance. Common enhance-
ments can include filtering to remove image noise and image
transforms such as band ratios or the intensity or hue image
from an IHS colour space transformation. The choice of en-
hancements depends on the imagery and requires some experi-
mentation. For example, in Pouliot et al. (2002), a smoothed
hue image was found to be the best enhancement for Kodak
DCS 460 colour infrared imagery. In the present study, vi-
sual examination of the imagery revealed that the crown
apexes and boundaries were most distinct in the NIR band
and that image transformations and smoothing were not re-
quired.

Following initial band selection or enhancements, a coni-
fer vegetation mask must be created to remove as much
other vegetation (typically low-lying ground vegetation such
as mosses) that is also green at this time of year. It can be
created in a number of ways, but typically simple thres-
holding is sufficient or classification methods may be used if
multispectral data are available. The conifer mask is used in
all subsequent processing stages.

For this study, the original three spectral bands were clas-
sified into 100 clusters using the ISODATA algorithm (Jensen
1996) and aggregated into two final classes, conifers and
nonconifers. This hyper-clustering approach was used be-
cause it allows for full control of the merging process and
does not require the user to explicitly define class spectral
properties, as is the case with supervised approaches. The
binary mask created from the clustering process was dilated
using a 3 × 3 structuring element to remove small holes in
the mask and to ensure that the full extents of crowns were
covered. The NIR image data under the mask were then ex-
tracted for the detection–delineation processing.

Scale selection
The scale at which imagery is acquired is often not the

optimal scale for automated tree detection. At fine scales,
small trees are more likely to be detected, but within-crown
branching of large crowns can cause numerous false detec-
tion errors due to local maxima associated with within-crown
branch clusters. At coarser scales, small trees may be missed
or overlapping trees may be detected as a single crown.
Thus, a scale optimization step is required to identify the
scale that maximizes the detection of small trees while mini-
mizing the detection of large crown branches and other im-
age artifacts as individual crowns. Pouliot and King (2005)
evaluated four approaches for optimal conifer detection in
three different regenerating forest conditions using aerial pho-
tography and digital camera imagery. The best, and that used
in this study, was adapted from a global approach presented
in Culvenor (2000). In this approach the relation between
scale simulated using a Gaussian filter and the number of lo-
cal maxima identified (i.e., local maxima smoothing relation
(LMSR)) was used to define the optimum scale. In examin-
ing this relation (Fig. 3), initial smoothing levels remove im-
age noise and the number of local maxima drops rapidly
with scale. This decrease then begins to slow down as noise
is further removed, and within-crown branching starts to be-
come the major source of additional local maxima. Further
smoothing removes local maxima caused by within-crown
branching, but also starts to remove small crowns, leading to
omission error. Hence, there is a need to determine the point
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1 . Image Preprocessing – Enhance crown
radiometric properties and create crown
mask

3. Crown Detection and Initial
Segmentation – Detect crowns and
generate initial crown boundary segments

4. Segmentation Refinement – Refine
initial crown segmentation using
additional crown boundary information

2. Scale Selection – Evaluate image to
determine optimal scale

Fig. 2. Flow chart showing stages involved in algorithm imple-
mentation.
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Fig. 3. The solid line is an example of a local maxima smooth-
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that optimally balances the two error sources. An automated
approach to selection of the optimal scale from the LMSR
was suggested by Culvenor (2000) based on the maximum
rate of change in the second derivative, but tests of this ap-
proach found it to be highly sensitive to local variations in
the LMSR. Attempts to improve the automated selection
procedure by applying smoothing algorithms (local averag-
ing, Gaussian smoothing, and Lowess smoothing) to remove
these variations revealed a strong dependence on the param-
eters selected. No logical criteria for parameter selection
could be identified, making the selection an arbitrary trial
and error process. Consequently, a more robust visual as-
sessment procedure was adopted as described next.

The first step in visual assessment involved plotting the
LMSR (Fig. 3). Then, the longest line that could be fit to the
LMSR curve was determined, starting with the last point and
moving towards the first point. This was defined as a linear
fit where residuals were, in relative terms, small and equally
distributed on either side of the line. In the final step, the
point where this line and the curve started to diverge was de-
termined. This point was taken as an indication of the opti-
mal level of smoothing required. In this implementation, the
LMSR was determined using a step size of 0.1σ within a
range of 0–5. This scale selection approach is advantageous
in that it does not require field data and provides information
on the scaling properties of the crowns in the imagery that
can be used to estimate a scale close to that of the optimum.
Although repeatable (in tests of independent users), the main
disadvantage is that it is subjective and requires users to cal-
ibrate amongst themselves. It is also limited by the degree to
which commission and omission errors can be simultaneously
minimized using a single global scale.

Crown detection and initial segmentation
Crown detection and initial segmentation were carried out

using a watershed algorithm approach adapted from Persson
et al. (2002), who applied it to lidar data in mature forest
conditions. In this method, each pixel in the image is consid-
ered a seed and is forced to follow the local upward gradient
until a local maximum point is reached. This seed pixel is
then assigned to the cluster (or segment) for that local maxi-
mum position. The results of the algorithm produce an image
with the same positions of local maxima as those obtained
using a 3 × 3 local maximum filter. However, it also pro-
vides an initial segmentation of the crowns based on the
cluster defined by pixels that climbed to a given local maxi-
mum point.

Segmentation refinement
The initial segmentation results from the gradient-following

procedure are highly dependent on the quality of the crown
mask created in stage 1, which in turn is dependent on the
quality of the image data used and the image processing per-
formed to create the mask. For example, brightness varia-
tions due to bidirectional and optical light fall-off effects can
lead to the removal of crown pixels or addition of noncrown
pixels, depending on the criteria used to separate crown and
noncrown pixels. The purpose of the refinement step is to
minimize this dependence by locally assessing the bound-
aries for each crown based on the initial gradient-following
results. The refinement step was adapted from Pouliot et al.
(2002). Starting at each local maximum, a user-specified

number of transects around the candidate crown object are
extended from the local maximum out to the local minimum
boundary defined by the initial segmentation results, plus
one additional pixel. The transect data are then extracted,
and the maximum value in the first derivative is taken as the
most suitable crown boundary position. In this study, crown
boundaries were detected using the original unsmoothed im-
agery to avoid boundary distortion due to smoothing.

Detection–delineation evaluation
In mature forests, difficulties and costs associated with locat-

ing and measuring trees in the field have led to a large diversity
of accuracy assessment procedures. However, in regenerat-
ing conditions it is easier to locate and measure trees in the
field because of the reduced vertical structure. Thus, for val-
idation, field-based measurement was conducted. Here, we
present a standardized accuracy assessment procedure that
can be used with field measurements to provide summary and
indepth information regarding detection–delineation errors.

Visual assessment
One of the most effective means to acquire insight regard-

ing processing results is visual evaluation. Prior to algorithm
implementation, a set of four plots was selected that repre-
sented the unique characteristics of each transect. These plots
included small trees, clustered groups of trees, and plots
with high levels of woody stem competition. The detection–
delineation results for these plots were examined to assess
the general accuracy, identify errors, error commonalties,
and error sources.

Quantitative assessment of detection results
Detection accuracy was quantitatively evaluated using a

method adapted from Pitkanen (2001), where points from
automated tree detection are assigned to ground-measured
reference locations based on an iterative search distance al-
gorithm. In the first iteration, all detected tree points from
the automated processing within a given search distance of a
reference tree location are found, the overlap between the
segments for these points is calculated, and the largest over-
lap is assigned as a match to the reference point. Following
this, the matched automated point and the reference point
are removed from further consideration so that a given refer-
ence tree cannot be assigned to more than one detected tree.
Overlap is taken as the average from both perspectives, that
is, image to field segment and field to image segment. A
minimum overlap threshold is also used to ensure that small
overlapping segments are not considered. In subsequent iter-
ations, a larger search distance is used, up to a maximum
search distance of approximately half the size of the average
tree crown size in the data set. In this study, the initial search
distance was 0.1 m and the maximum search distance was
0.3 m, with the search distance increasing by 0.1 m for each
iteration. The minimum overlap threshold was set at 20%.
After the algorithm is complete, the reference trees not
matched are taken as omission error, the detected trees not
matched to a reference tree are taken as commission error,
and the matched segments are considered correctly identified
trees. The sizes of the test and reference segments associated
with each match were also recorded so that the relation be-
tween detection accuracy and tree size could be evaluated.
Detection results for minimum tree sizes of 30 and 60 cm
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were evaluated. The numbers of omission, commission, and
correctly identified trees are reported along with an accuracy
index (Pouliot et al. 2002) calculated as

AI = [(n – o – c) / n] × 100

where n is the actual number of trees in the study area and o
and c are the numbers of omission and commission errors,
respectively. With this index, both omission and commission
errors are incorporated into a single summary value. Nega-
tive AI values are possible and occur when commission and
omission errors are greater than the total number of trees
counted in the field.

Empirically determined optimal scale
As the results of the detection algorithm were specifically

for the image-based global smoothing factor selected using
the procedure described previously, it was of interest to know
what the accuracy would be if the optimal global smoothing
factor was determined empirically through use of iterative
accuracy assessment. To do this, each transect was smoothed
using a Gaussian filter, with smoothing factors ranging from
1 to 3.5, in increments of 0.5σ. Local maxima were detected
using the gradient following method, and accuracy results
were compiled using the field data as described before. The
optimal factor was taken as that which produced the highest
AI.

Quantitative assessment of delineation results
Delineation accuracy was assessed by comparing the aver-

age crown dimensions for the matched trees using root mean
square error (RMSE) and relative RMSE% calculated as

RMSE%
( )

=
−

×
∑1

100

2

n
P O

O

i i

where n is the number of observations, Pi is the predicted
value from automated delineation, Oi is the observed value
in the field, and O is the mean of the observed values. Mean
absolute error (MAE) was also reported, as it is more robust
to outliers, which can dramatically inflate RMSE values. De-
lineation error was evaluated first for all matched trees and
second for those matched trees where only one automated
segment was found to overlap a field reference ellipse by
greater than 50%. This was done so that delineation results
could be evaluated with minimal influence of detection error.
Crown diameters for the automated delineations were mea-
sured in the same orientations as the field measurements and
averaged. An automated method for crown diameter mea-
surement was developed, which used the bounding rectangle
to determine the crown centroid and then calculated the dis-
tance from the centroid to the polygon boundary.

Aggregated assessment of detection, delineation, and tree
height

The results were also evaluated as aggregated estimates
for the entire transect, as this reflects how they would most
likely be used in regeneration assessment and management.
Aggregate estimates of stem density and average crown di-
ameter extracted from the detected–delineated crowns, as
well as tree height modeled from crown diameter, were com-
pared with field measurements to determine percent error.

Height was estimated using the delineated crown diameter in
a linear equation derived from the field data (Height =
1.34 × Crown_Diameter + 28, R2 = 0.81, SE = 25 cm). De-
tection, delineation and tree height aggregate estimates were
compared for all trees and for the 30- and 60-cm crown size
thresholds.

Results

Visual assessment
Figure 4 shows the example plots that were selected for

visual assessment. It should be noted that the blurry nature
of the imagery was due to strong vibrations at the end of the
boom that housed the camera. In all cases, it was apparent
that crowns with strong brightness valleys were well delin-
eated. Omission error occurred for small trees (A) and trees
growing in close proximity or in large clumps (B). Commis-
sion error was less frequent in the example plots, with errors
caused by low-lying ground vegetation (C) and within-crown
brightness variability (D). Woody stem competition did not
significantly hide trees from the sensor in this leaf-off imag-
ery, but automated delineations do appear to be smaller than
the field-measured ellipses for the plot shown in the bottom
row of Fig. 4. Figure 5 shows sample areas for each transect
at a scale suitable for a broad overview of the results.

Detection accuracy
The empirically determined optimal smoothing factor for

each site was found to be 3σ, 2σ, and 1.5σ, giving AI values
of 72.8%, 66.4%, and 44.9% for the high, moderate, and low
transects, respectively (Table 1). These results are consid-
ered to be the best obtainable for this imagery and detection
algorithm because the image scale has been optimized to
achieve the highest agreement with the field data. In prac-
tice, however, field data would not typically be abundant
enough to conduct such an analysis. Consequently, the scale
selection step described previously was implemented as part
of the overall detection–delineation algorithm, resulting in
optimal smoothing factors of 2.4, 2, and 1.6 for the same
transects. With these smoothing intensities, accuracies are
within 3% of the empirically determined optima (Table 2, all
trees), indicating that the visually based σ selection method
performed well. The poorest results were observed for the
low transect because of high omission error. Omission error
for this transect was almost double that for the other two
transects. Absolute commission error was largest for the mod-
erate transect, but relative to the total number of field-counted
trees, the high transect suffered the most from commission
error.

To more fully understand the sources and magnitude of
detection errors, omission and commission errors were visu-
ally evaluated and classified as to their most likely source.
Figure 6 shows examples of errors of omission: a large crown
overtops a smaller crown, hiding it from the sensor view
(Fig. 6A), two proximal crowns result in a weak or nonexis-
tent between-crown brightness valley (Fig. 6B), a very small
isolated crown (15 cm diameter) with a signal too weak to
be detected (Fig. 6C), a small crown (30 cm diameter) with
a weak signal that is further reduced by the presence of com-
peting vegetation (Fig. 6D). Errors of commission are also
shown in Fig. 6: low-lying noncrop vegetation detected and

© 2005 NRC Canada

Pouliot et al. 2337



delineated as several tree crowns (Fig. 6E) and branch
clusters in a crown detected and delineated as two crowns
(Fig. 6F).

The largest source of detection omission error was the
presence of tree crowns smaller than could be detected with
this pixel size and the selected smoothing factors, but it was
only greater than other error sources for the low transect
(Table 3). Adjacent trees in close proximity were the second
largest error source. Additional omission errors due to small
trees being overtopped by larger conifers occurred in both
the low and moderate transects. These transects are younger
than the high transect, so sufficient competition between co-
nifers and from overtopping woody vegetation has not yet

resulted in mortality of these small trees. This has produced
a more clumped spatial arrangement of conifers in the low
and moderate sites than in the high site. The average diame-
ter of omitted tree crowns was 32 ± 26 cm (mean ± SD).
Woody competition did not significantly affect omission error.

Commission errors due to low-lying vegetation were greater
than those due to within-crown branching. They typically
consisted of small segments generated where a tree did not
exist or, in the case of within-crown brightness variability,
adjacent small and large segments generated for a single
crown. The tree-matching algorithm used to evaluate accu-
racy takes the largest automated segment to represent the
field-determined crown segment and the smaller automated
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Fig. 4. Example results for selected plots. Yellow, automated crown delineations; green, field- located and field-measured crown ellip-
ses. The rows represent site conditions as follows: row 1, plot showing typical conditions with a few large and small trees, some being
in close proximity to one another; row 2, plot with mostly small trees, crown diameters from 10 to 40 cm; row 3, plot with a high de-
gree of tree clustering; row 4, plot with a high degree of woody stem competition. Common detection errors are marked A, B, C, and
D, as described in text.



segments are taken as commission errors. The average diam-
eter of commission error segments was 50 ± 33 cm.

Because detection errors were caused by small trees being
missed or by the generation of small but false segments in
the processing results, substantial improvement is possible
by thresholding the crown sizes used for validation. Increasing
the minimum crown size to 30 cm dramatically improved re-
sults for all three transects, with the greatest increase in AI
(22%) occurring for the low transect (Table 2). At this size
threshold, two of the three sites have AI >80%. Increasing

the minimum crown size to 60 cm again increased accuracy,
but at a slower rate as the accuracies approached 100%.

Delineation accuracy
For all matched crowns, the MAE error for delineation

ranges from 15% to 23% (Table 4). RMSE% values are
higher (22%–35%), showing that RMSE% is more affected
by extreme values in the data. Results for crowns matched as
one automated segment to one field reference ellipse (i.e.,
1:1) show considerable improvement, with MAE% values
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Fig. 5. Example overview images of detection–delineation results for the three transects. Top, low; middle, moderate; bottom, high.



ranging from 13% to 17%. For these trees, strong linear rela-
tions were found, with R2 values ranging from 0.76 to 0.87
and slopes close to 1, but with varying magnitude and direc-
tion of offsets (Fig. 7). Larger crowns in the imagery tended
to be underestimated by the delineation algorithm. This error
is more prevalent for the high transect and explains why it
had the poorest delineation results. For the low transect there
was a slight overestimation of small crowns less than about
50 cm in diameter.

The average plot error, in terms of the difference between
image- and field-measured crown diameter, showed a weak

relation with the number of competing woody stems within
the plot (Fig. 8). The relation was stronger when only
woody stems above 2.5 m in height were counted. This was
due to the effect of the increased overtopping of larger trees,
which tended to obscure the conifer crown boundaries to a
greater degree. Although there does appear to be a relation,
it does not consistently produce errors that are larger than
those caused by noncompetition factors (i.e., spread of errors
where little or no competition was present).
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Plot Smoothing factor (σ) Omission Commission Correct Correct % AI %

Low 1.0 113 66 143 55.9 30.1
Low 1.5 125 16 129 50.4 44.9
Low 2.0 135 9 121 47.3 43.8
Low 2.5 143 5 113 44.1 42.2
Low 3.0 151 5 105 41.0 39.1
Low 3.5 152 5 104 40.6 38.7
Moderate 1.0 43 87 222 83.8 50.9
Moderate 1.5 55 36 210 79.2 65.7
Moderate 2.0 64 25 201 75.8 66.4
Moderate 2.5 71 21 194 73.2 65.3
Moderate 3.0 75 19 190 71.7 64.5
Moderate 3.5 78 19 187 70.6 63.4
High 1.0 11 46 103 90.4 50
High 1.5 14 33 100 87.7 58.8
High 2.0 14 19 100 87.7 71.1
High 2.5 16 18 98 86.0 70.2
High 3.0 16 15 98 86.0 72.8
High 3.5 17 15 97 85.1 71.9

Note: AI, accuracy index.

Table 1. Detection accuracy with increasing Gaussian smoothing intensity for plots in low, mod-
erate, and high transects; values are tree counts unless specified otherwise.

Transect Min. crown size Omission Commission Correct Total Correct % AI %

Low All 125 10 129 256 50.4 47.3
Low >30 cm 44 7 124 168 73.8 69.6
Low >60 cm 16 2 78 94 83.0 80.9
Moderate All 64 25 201 265 75.8 66.4
Moderate >30 cm 22 13 186 208 89.4 83.2
Moderate >60 cm 7 4 118 125 94.4 91.2
High All 15 19 99 114 86.8 70.2
High >30 cm 7 7 97 104 93.3 86.7
High >60 cm 2 5 67 69 96.7 90.0

Note: AI, accuracy index.

Table 2. Detection accuracy for all trees and for trees with crown diameters greater than 30 and
60 cm; values are tree counts unless specified otherwise.

Fig. 6. Examples of detection error sources. Green segments are field-measured reference ellipses; yellow segments are automated de-
lineation results. Figures 6A–6D show omission errors, and Figs. 6E–6F show commission errors, as described in the text.



Aggregated detection–delineation errors
In aggregation of the results for each transect, errors were

lower than the individual tree comparisons (Table 5). The
best results were found for the 30 cm crown size threshold.
Increasing the threshold to 60 cm improved detection, but
errors for crown diameter and tree height increased because
of the greater error in delineation of larger trees. For crown
diameter and height estimates, exclusion of trees less than
30 cm produced very high accuracy for the low transect and
good accuracy for the others. As these results reveal, the im-
provements due to aggregation are strongly influenced by the
bias in the individual estimates. This is evident for the crown
diameter comparisons, which, on an individual basis, resulted
in larger crown sizes being underestimated, leading to larger er-
ror for aggregated comparisons with larger crown sizes.

Discussion

Detection accuracy
On an individual-tree basis, moderate accuracies for de-

tection of 6–300 cm tall conifers (AI = 48%–70%) were pro-

duced using the algorithm implemented on 6 cm pixel size
digital camera imagery. Application of minimum crown di-
ameter thresholds of 30 and 60 cm improved detection accu-
racies to 70%–87% and 81%–91%, respectively. This was
because most errors of omission and commission were linked
to small trees or low-lying non-tree vegetation. Depending
on management and sampling objectives, the omission of
such small trees may be inconsequential. This tree size influ-
ence was also seen in the aggregated transect-level compari-
son, where accuracies were significantly better for crowns
larger than 30 cm. The low-competition transect, which had
many small crowns that could not be detected, produced the
greatest improvement in accuracy when the small trees were
excluded.

The high omission error observed in the low transect was
due to two factors. First, the crown size distribution of the
low transect was skewed towards smaller crowns, of which
there were many. Second, the preprocessing step used to ex-
tract the crowns (unsupervised cluster labeling) was biased
towards missing many of these small crowns. The bias re-
sulted from the abundance of low-lying vegetation at this
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Omission error Commission error

Transect
Adjacent
overtopped tree

Adjacent trees in
close proximity

Small
tree

Small tree with
competition

Branch
pattern

Low ground
vegetation

Low 7 35 83 0 6 4
Moderate 16 23 23 5 4 21
High 0 5 5 5 7 12
Total 23 63 111 10 17 37

Table 3. Counts of detection error category and source.

Transect R2 Slope Offset MAE (cm) MAE % RMSE (cm) RMSE%

Low 0.64 1.1 –9.5 16.1 20 22.7 28.8
Low (1:1) 0.73 1.12 –7.8 10.5 14.15 14.5 20.6
Moderate 0.76 1 2.1 10.5 15 15.1 21.7
Moderate (1:1) 0.82 1.01 0.05 9 13.3 12.8 18.9
High 0.6 1.1 –1.6 18.7 22.7 28.7 34.9
High (1:1) 0.75 1.05 1.07 13.2 17.1 17.6 22.7

Note: MAE, mean absolute error; RMSE, root mean square error.

Table 4. Summary statistics for delineation accuracy.
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Fig. 7. Scatterplots of field-measured versus image-measured average crown diameter for trees matched as one automated segment to
one reference ellipse (i.e., 1:1). Solid line represents y = x.



site, particularly mosses, which could not be adequately sep-
arated from the small crowns in the creation of the crown
mask. Thus, omission error due to small crowns was pre-
ferred over commission error due to low-lying vegetation in
this transect. This same bias was applied when extracting
crown pixels from the other two transects, but the resulting
error was not as extreme because the moderate and high
transects did not have as many small crowns.

Additional means to improve detection of small trees in-
clude improvement of image quality and modification of
data acquisition timing, data types, and image processing.
The quality of imagery acquired for this study was poor rela-
tive to what was expected for 6-cm pixel size. Although the
flight speed was low, the strong boom vibration caused sig-
nificant image motion blurring. Either faster shutter speeds
and (or) a more vibration isolated mount would reduce these
effects and provide for more precise tree detection and crown
boundary delineation. In terms of image timing, true leaf-off
imaging cannot be considered a viable solution, as many
mosses maintain their greenness throughout the year and
many grasses were green within a few days of snowmelt.
Such a narrow time period for image acquisition is too limiting
for operational applications. Instead, data could be acquired
in winter; however, snow depth would have to be monitored
and acquisition would have to be carried out when snow has

melted off crowns. If other data types can be considered,
combined use of digital camera imagery and lidar would be
advantageous, although costs associated with lidar systems
can be high. Leckie et al. (2003) compared detection–delin-
eation results for both sensors in mature forest conditions
and found that lidar data were particularly useful in more
open forest conditions, because a simple height threshold
could be applied to remove false detection due to what was
considered to be low-lying vegetation. Implementing an im-
proved classification methodology is a potentially low-cost
alternative. Object-based classification, such as that avail-
able with the commercial package eCognition, may be used
to separate low-lying vegetation from coniferous crowns.
The advantage is that the spectral responses of objects such
as small crowns and low-lying vegetation that are generated
by such a region-growing procedure are likely to be more
distinct than the individual pixels contained in each object.

Omission errors caused by small trees and trees in close
proximity as well as commission errors due to oversegmen-
tation of trees with strong branching patterns are errors re-
lated to image scale. At scales with more detail there is an
increased probability of correctly detecting small trees and
trees in close proximity because the local valley brightness
gradients used to separate crowns are more distinct. How-
ever, for large crowns, fine scales tend to retain distinct
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Fig. 8. Scatterplots showing the difference between image- and field-measured mean plot crown diameter and the stem density of
woody competition.

Tree density (stems/ha) Crown diameter (cm) Tree height (cm)

Transect Min. crown size Image Field % error Image Field % error Image Field % error

Low All 2459.3 4529 –45.7 75.4 55 37.1 127.7 93 37.3
Low >30 2317.8 2972 –22.0 75.4 76.1 –0.9 127.7 125.8 1.5
Low >60 1415.4 1663 –14.9 88.3 95.6 –7.6 145.3 151.8 –4.3
Moderate All 3998.6 4689 –14.7 63.5 59.5 6.7 112.4 110 2.2
Moderate >30 3520.9 3680 –4.3 67.7 71.1 –4.8 117.9 128 –7.9
Moderate >60 2158.5 2212 –2.4 83.5 88.4 –5.5 150.6 140 7.6
High All 2087.8 2017 3.5 71.2 77 –7.5 123.4 138 –10.6
High >30 1831.2 1833 0.1 76.8 83.3 –7.8 131 147 –10.9
High >60 1261.5 1221 3.3 89.4 102 –12.4 148 170 –12.9

Table 5. Transect mean and percent difference measures between image- and field-measured tree density, crown di-
ameter, and tree height.



brightness valleys due to branches rather than crown bound-
aries, leading to false crown detection–delineation. Ideally,
the appropriate scale for detecting a particular tree should be
defined by the image characteristics in the local vicinity of
the crown. Unfortunately, this is not a simple task. Pouliot
and King (2005) found that for conditions with variable tree
size and spacing, the best detection results were obtained us-
ing a locally determined scale instead of a global scale.
However, the local approach proved to be highly parameter
intensive and therefore was not considered operationally use-
ful, nor suitable for the present study. Further research in
scaling for optimal feature extraction and other optimal de-
tection approaches is needed to overcome this general limi-
tation of segmentation methods.

Delineation accuracy
In previous research using a more simplified algorithm

under controlled tree spacing and competition conditions,
Pouliot et al. (2002) found individual tree delineation accu-
racies for crowns detected as 1:1 to have RMSE% = 17.9%
for 5 cm pixel spacing imagery. In this study, under uncon-
trolled operational conditions with a more advanced algo-
rithm, RMSE% was 19%–23%. As identified in this study,
Pouliot et al. (2002) also found that the large crowns were
underestimated by the detection–delineation processing. For
spatially aggregated results, Gougeon and Leckie (1999) com-
pared average crown diameters for entire stands and found
errors ranging from 7% to 9%. In Pouliot et al. (2002) whole-
plot error was 3%. In this study, whole-transect error ranged
from 7% to 37% for all trees and from 1% to 8% when only
trees with a crown diameter greater than 30 cm were consid-
ered. The major difference between these studies, apart from
the algorithms and image pixel sizes used, was the size and
spacing variability of the trees, with much less variability in
the studies presented by Gougeon and Leckie (1999) and
Pouliot et al. (2002). In mature forests, Brandtberg and Walter
(1998) did not find a significant relation between field- and
image-measured crown diameters. Persson et al. (2002) re-
ported an RMSE of 0.61 m using lidar data, but the average
crown diameter was not reported and could only be inferred
from graphs given in their study. Assuming an average crown
diameter of 5 m, their results are quite good with an RMSE
of ~12%. The field and image measures were also linearly
related (r2 = 0.76) and, like the results presented here, tended
to slightly underestimate larger crowns.

Delineation error is heavily tied to detection error because
of the effects of commission error for large crowns reducing
the crown size estimates. Thus, the improvements identified
for detection will improve the delineation results. Further
improvement in delineation accuracy is also possible with
subpixel processing. For the data used in this study, the 6 cm
pixel size and selected smoothing factors could result in di-
ameter estimate errors of approximately 1–6 cm depending
on how the 6-cm grid of the acquired image data overlaid
the tree crowns. For example, a mixed pixel with an area of
55% conifer and 45% soil would be seen as a crown pixel. If
this pixel is used in the crown diameter estimate it would
cause an over estimation of the crown diameter by ~3 cm
because of the mixed pixel effect. Thus, if two of these pix-
els are included in the diameter estimate, a maximum error

of ~6 cm could result. This suggests possible errors of up to
9%, considering the average crown size for transects in this
study was 65 cm. Another important source of error was the
field measurements, which showed the average MAE to be
5 cm based on a remeasurement of 30 trees. Thus, an addi-
tional 8% error was possible.

Effect of competition
The effect of adjacent and overtopping woody stem vege-

tation on conifer detection–delineation accuracy was small
relative to other sources. Small crowns in plots with or without
high competition were difficult to accurately detect, and there
were insufficient data on small crowns in high-competition
areas to conclusively assess competition effects. Larger crowns
(i.e., >30 cm) were detected successfully with competition
present. Delineation error was more clearly affected by the
presence of competing vegetation and tended to generally
reduce crown size estimates. However, in many cases it ap-
peared that competition was a less important factor for delin-
eation error than other error sources such as image scale and
spatial arrangement of trees. The use of plot averages to rep-
resent competition intensity rather than individual measure-
ments was a significant limitation of this analysis. These
measurements were made on a plot level to satisfy several
analysis objectives. Individual measurements would have been
preferred, as there was considerable variability in tree size,
spacing, and spatial arrangement of both conifers and woody
competition stems within the plots. The presence of this
variability reduces the utility of the mean plot measures to
be used for comparisons among plots. Despite these limita-
tions, the results do suggest that competing vegetation is po-
tentially less important than other sources of error.

Operational considerations
Image data quality plays an important role in both detec-

tion and delineation. Factors such as sensor view angle, sun
elevation, and topography have a significant effect on the ra-
diometric and geometric properties of the tree crowns. Using
simulated imagery of mature Eucalyptus forests, Culvenor
(2000) showed that detection accuracy performance was best
with small off-nadir view angles (i.e., <15°) using backscat-
tered as opposed to forward-scattered image data and higher
solar zenith angles. To reduce optical- and illumination-view
angle (i.e., bidirectional) effects, imagery with narrow view
angles can be acquired with a high degree of overlap and
used in subsequent mosaic generation. The effect of topogra-
phy has not been widely researched. Culvenor et al. (2000)
found that the effects of topography depended on the inci-
dent radiation relative to the topographic slope and aspect.
At the tree level, differences in illumination due to topogra-
phy cause differences in mutual shading of crowns and the
brightness response of the background. At a coarser scale,
topography produces shaded and sunlit slopes that make it
difficult to effectively extract an accurate crown mask. More
research is needed to develop appropriate means to reduce
both crown-level and terrain-level topographic brightness
effects on detection–delineation accuracy. Topography also
affects pixel size, which in turn can impact crown size esti-
mates, but this effect could be minimized through orthorecti-
fication if a suitable digital elevation model can be derived.
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With the image pixel size used in this study, the proposed
methodology would most likely be used in a strip-sampling
approach to acquire greater sample coverage than could be
obtained through field surveys. Such a methodology pro-
vides a potentially lower cost means to increase sample cov-
erage, access remote areas, and retain a permanent visual
record of the site conditions. An indepth economic analysis
is beyond the scope of this study, but eventually will have to be
performed. Here the major cost was the use of the helicop-
ter, billed at CAN$1200/h. Alternatively, fixed-wing aircraft
could be used at lower cost, but a camera with capability for
higher shutter speeds than those used in this study would be
required because of the associated increased flying speed. In
comparison to field surveys, this approach provides the means
to dramatically increase sample coverage, which cannot be
achieved through field sampling. Further, the collected data
can be used in other applications in addition to regeneration
inventory.

Conclusion

An automated tree detection–delineation algorithm devel-
oped for monitoring regenerating forest conditions was pre-
sented and evaluated. Detection accuracy was moderate when
all trees were considered and improved significantly to ac-
ceptable levels when very small trees (crown size <30 cm)
were excluded. The most significant factors found to affect
detection were small trees, trees close together such that lit-
tle or no distinct brightness valley was evident between them,
and the presence of low-lying vegetation. Crown delineation
MAE was <23% of field-measured crown diameter, and large
tree crown diameters were often underestimated. The pres-
ence of competing woody vegetation did not have a strong
influence on detection and had only a small effect on delin-
eation accuracy, with increasing competition reducing crown
size estimates slightly. If applied to narrow view angle imag-
ery with a small enough pixel size relative to the crown sizes
that are required to be detected and measured, this algorithm
could complement or replace field-based regeneration sur-
veys.
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